On the use of J-integral criterion for fracture assessment of cracked rigid polyurethane foam loaded in mixed mode I/II and I/III

Authors

1 Department of Mechanical engineering, Yazd university

2 Department of mechanical engineering, Yazd university

Abstract

The present study investigates and evaluates the J-integral criterion for rigid polyurethane foam using a cracked disk specimen subjected to bending with mixed mode I/II and I/III loading conditions. The primary objective of this study is to assess relationships for the J integral based on a new approach involving the strain energy density in a linear elastic material loaded under mixed mode conditions. To do so, the relevant relationships for a V-notch specimen are first derived and then extended to a cracked sample. The secondary aim of this research is to predict the fracture load using the J-integral criterion in mixed mode I/II and I/III loading conditions in rigid polyurethane foams. To validate the criterion, finite element modeling of a cracked disk specimen is carried out and the fracture load of the specimen under mixed mode I/II and I/III conditions is predicted according to the J-integral criterion. The results reveal the high accuracy of the criterion in predicting the fracture load of specimens under mixed mode conditions, with the maximum error percentage of 8%.

Keywords

Main Subjects


[1] Zhang J, Ashby M (1994) Mechanical selection                    of foams and honeycombs used for packaging and energy absorption. J. Mater. Sci. 29: 157-163.
[2] Avalle M, Belingardi G, Montanini R (2001) Characterization of polymeric structural foams under compressive impact loading by means of energy-absorption diagram. Int. J. impact Eng. 25(5): 455-472.
[3] Saha M, Mahfuz H, Chakravarty U, Uddin M, Kabir ME, Jeelani S (2005) Effect of density, microstructure, and strain rate on compression behaviour of polymeric foams. Mater. Sci. Eng.: A 406(1-2): 328-336.
[4] Serrano A, Borreguero AM, Garrido I, Rodríguez JF, Carmona M (2017) The role of microstructure on the mechanical properties of polyurethane foams containing thermoregulating microcapsules. Polym. Test. 60: 274-282.
[5] Linul E, Şerban DA, Marsavina L, Sadowski T (2017) Assessment of collapse diagrams of rigid polyurethane foams under dynamic loading conditions. Arch. Civ. Mech. Eng. 17(3): 457-466.
[6] He H, Fan H (2022) Dynamic theory of sandwich meta-panel under blast load. Euro. J. Mech. A/Solids 94: 104599.
[7] Marsavina L (2010) Fracture mechanics of cellular solids. Cell. Porous Mater. Struct. Process. 521: 1-46.
[8] فریدون ع، یکتای‌کیا ف (2009) تحلیل ترک در مواد مرکب به وسیله روش انرژی، مدل سازی در مهندسی. 3(17): 55-65.
[9] Rice JR (1968) A path independent integral and the approximate analysis of strain concentration by notches and cracks. J. Appl. Mech. 35(2): 379-386.
[10] Shih C, Hutchinson J (1976) Fully plastic solutions and large-scale yielding estimates for plane stress crack problems. J. Eng. Mater. Tech. 98(4): 289-295.
[11] Amestoy M, Bui H, Labbens R (1981) On the definition of local path independent integrals in three-dimensional crack problems. Mech. Res. Commun. 8(4): 231-236.
[12] Shih C, Moran B, Nakamura T (1986) Energy release rate along a three-dimensional crack front in a thermally stressed body. Int. J. Fract. 30: 79-102.
[13] Sakata M, Aoki S, Kanzawa M, Ogure N, Tateishi K (1978) J-integral approach to fracture of rotating disk. J. Eng. Mater. Tech. 100(2): 128-133.
[14] Singh R, Parihar K (1986) The J-integral as a fracture criterion for polycarbonate thermoplastic. J. Mater. Sci. 21: 3921-3926.
[15] Vukelić G, Brnić J (2011) J-integral as possible criterion in material fracture toughness assessment. Eng. Rev. 31: 91-96.
[16] Marsavina L, Constantinescu DM, Linul E, Apostol DA, Voiconi T, Sadowski T (2014) Refinements on fracture toughness of PUR foams. Eng. Fract. Mech. 129: 54-66.
[17] Marsavina L, Constantinescu DM, Linul E, Voiconi T, Apostol DA (2015b) Shear and mode II fracture of PUR foams. Eng. Fail. Anal. 58: 465-476.
[18] سلیمانی م، طهانی م، زمانی پ (2018) بررسی اثر ناحیه غنی از رزین بر رشد ترک در هسته‌ی فومی پره کامپوزیتی توربین بادی به روش المان محدود، مکانیک سازه‌ها و شاره‌ها. 8(4): 38-27.
[19] پیرمحمد س، کیانی ا (2018) تحلیل عددی نمونه جدید آزمایشگاهی جهت انجام آزمایش‌های شکست تحت بارگذاری مود مرکب I/III، مکانیک سازه‌ها و شاره‌ها. 8(3): 247-259.
[20] Aliha M, Linul E, Bahmani A, Marsavina L (2018) Experimental and theoretical fracture toughness investigation of PUR foams under mixed mode I+ III loading. Polym. Test. 67: 75-83.
[21] Aliha M, Mousavi S, Bahmani A, Linul E, Marsavina L (2019) Crack initiation angles and propagation paths in polyurethane foams under mixed modes I/II and I/III loading. Theor. Appl. Fract. Mech. 101: 152-161.
[22] Shahbazian B, Mirsayar M, Aliha M, Darvish MG, Asadi MM, Haghighatpour PJ (2022) Experimental and theoretical investigation of mixed-mode I/II and I/III fracture behaviour of PUR foams using a novel strain-based criterion. Int. J. Solids. Struct. 258: 111996.
[23] Imani D, Aliha M, Linul E, Marsavina L (2022) A suitable mixed mode I/II test specimen for fracture toughness study of polyurethane foam with different cell densities. Theor. Appl. Fract. Mech. 117: 103171.
[24] Vantadori S, Carpinteri A, Cerioni R, Ronchei C, Scorza D, Zanichelli A, Marsavina L (2023) Fracture toughness of a rigid polyurethane foam: experimental and numerical investigation by varying the specimen sizes. Fatigue. Fract. Eng. Mater. Struct. 46(10): 3654-3666.
[25] Gdoutos EE (2020) J-Integral and Crack Opening          Displacement Fracture Criteria. 3rd edn. Cham, 263: 167-213.
[26] Matvienko YG, Morozov E (2004) Calculation of the energy J-integral for bodies with notches and cracks. Int. J. Fract. 125: 249-261.
[27] Matvienko YG (1994) J-estimation formulas for nonlinear crack problems. Int. J. frac. 68: R15-R18.
[28] Berto F, Lazzarin P, Matvienko YG (2007) J-integral evaluation for U-and V-blunt notches under Mode I loading and materials obeying a power hardening law. Int. J. Fract. 146: 33-51.