بهینه سازی فرکانس طبیعی سازه های دو و سه بعدی خرپا به روش تحلیل حساسیت گسسته

نوع مقاله: مقاله مستقل

نویسندگان

1 دانشجوی دکتری، دانشکده مهندسی مکانیک دانشگاه شیراز، شیراز، ایران

2 استاد، دانشکده مهندسی مکانیک دانشگاه شیراز، شیراز، ایران

چکیده

کنترل و بهینه‌سازی فرکانس‌های طبیعی یک سازه یک موضوع مهم در مهندسی مکانیک، هوافضا و عمران می‌باشد. در این مقاله مسائل جدیدی برای بهینه‌سازی سطح مقطع اعضای سازه‌های خرپای دو بعدی و سه بعدی معرفی و مطالعه می‌شود. سه الگوریتم به منظور 1- افزایش اختلاف دو فرکانس اول، 2- افزایش فرکانس اول و 3- افزایش فرکانس دوم ضمن محدود نگه داشتن فرکانس اول ارائه می شود. از طریق ایجاد تغییر در سطح مقطع المانها، ضمن ثابت نگه داشتن وزن کل سازه با انجام آنالیز حساسیت گسسته، بهینه سازی مورد نظر انجام می گردد. آنالیز مودال، آنالیز حساسیت و بهینه سازی توسط یک کد تدوین شده در محیط برنامه‌نویسی نرم‌افزار انسیس انجام شده اند. جهت نشان دادن میزان کارایی این روش رفتار دو سازه خرپای دو بعدی و یک سازه خرپای سه بعدی مورد ارزیابی قرارگرفته است. مثال‌های ارائه شده نشان می‌دهند که با استفاده از روشهای پیشنهاد شده می‌توان فرکانس‌های طبیعی یک سازه خرپا را به میزان قابل توجهی بهینه نمود.

کلیدواژه‌ها

موضوعات


[1] Deb K, Gulati S (2001) Design of truss-structures for minimum weight using genetic algorithms. Finite Elem Anal Des 37(5): 447-465.

[2] Lingyun W, Mei Z, Guangming S, Guang M (2005) Truss optimization on shape and sizing with frequency constraints based on genetic algorithm. Comput Mech 35(5): 361-368.

[3] Jin P, De-Yu W (2006) Topology optimization of truss structure with fundamental frequency and frequency domain dynamic response constraints. Acta Mech Solida Sin 19(3): 231-240.

[4]  Camp CV (2007) Design of space trusses using Big Bang–Big Crunch optimization. J Struct Eng 133(7): 999-1008.

[5] Rahami H, Kaveh A, Gholipour Y (2008) Sizing, geometry and topology optimization of trusses via force method and genetic algorithm. Eng Struct 30(9): 2360-2369.

[6] Gomes HM (2011) Truss optimization with dynamic constraints using a particle swarm algorithm. Expert Syst Appl 38(1): 957-968.

[7] Miguel LFF, Miguel LFF (2012) Shape and size optimization of truss structures considering dynamic constraints through modern metaheuristic algorithms. Expert Syst Appl  39(10): 9458-9467.

[8] Kaveh A, Zolghadr A (2012) Truss optimization with natural frequency constraints using a hybridized CSS-BBBC algorithm with trap recognition capability. Comput  Struct 102: 14-27.

[9] Kaveh A, Zolghadr A (2013) Topology optimization of trusses considering static and dynamic constraints using the CSS. Applied Soft Computing 13(5): 2727-2734.

[10] Kaveh A, Talatahari S (2010) Optimal design of skeletal structures via the charged system search    algorithm. Struct Multidiscip Opt 41(6): 893-911.

[11] Miguel LFF, Lopez, RH, Miguel LFF (2013) Multimodal size, shape, and topology optimisation of truss structures using the Firefly algorithm. Adv Eng Softw 56: 23-37.

[12] Kaveh A, Mahdavi VR (2014) Colliding Bodies Optimization method for optimum design of truss structures with continuous variables. Adv Eng Softw 70: 1-12.

[13] Gandhi R (1993) Structural optimization with frequency constraints - a review, AIAA J 31(12): 2296-2303.

[14] Bahai H, Aryana F (2002) Design optimisation of structures vibration behaviour using first order approximation and local modification,  Comput  struct 80(26): 1955-1964.

[15] Aryana F, Bahai H (2003) Sensitivity analysis and modification of structural dynamic characteristics using second order approximation,  Eng Struct 25(10): 1279-1287.

[16]  Pedersen NL, Nielsen AK (2003)  Optimization of practical trusses with constraints on eigenfrequencies, displacements, stresses, and buckling. Struct Multidiscip Opt 25(5-6): 436-445.

[17] Wang D, Zhang WH, Jiang JS (2004) Truss optimization on shape and sizing with frequency constraints. AIAA J 42(3): 622-630.

[18] Gao W (2006) Interval natural frequency and mode shape analysis for truss structures with interval parameters. Finite Elem Anal Des 42(6): 471-477.

[19] Asadpoure A, Tootkaboni M, Guest JK (2011) Robust topology optimization of structures with uncertainties in stiffness–Application to truss structures. Comput Struct 89(11): 1131-1141.

[20] Haftka RT, Gürdal Z (2012) Elements of structural optimization (Vol. 11), Springer Science & Business Media.

[21] Sergeyev O, Mroz Z (2000) Sensitivity analysis and optimal design of 3D frame structures for stress and frequency constraints,  Comput  struct 75(2): 167-185.

[22] Apostol V, Santos JLT (1996) Sensitivity analysis and optimization of truss/beam components of arbitrary cross-section—I. Axial stresses, Comput struct 58(4): 727-737.

[23] Cardoso JB, Arora JS (1992) Design sensitivity analysis of nonlinear dynamic response of structural and mechanical systems. Struct optimization 4(1): 37-46.

[24] Materna D, Barthold FJ (2007) Variational design sensitivity analysis in the context of structural optimization and configurational mechanics. Int J Fracture 147(1-4): 133-155.

[25] Radwan AG, Moaddy K, Momani S (2011) Stability and non-standard finite difference method of the generalized Chua’s circuit. Comput Math Appl 62(3): 961-970.

[26] Reddy RM, Rao BN (2008) Fractal finite element method based shape sensitivity analysis of mixed-mode fracture. Finite Elem Anal Des 44(15): 875-888.

[27] Lepidi M (2013) Multi-parameter perturbation methods for the eigensolution sensitivity analysis of nearly-resonant non-defective multi-degree-of-freedom systems. J Sound Vib 332(4): 1011-1032.

[28]  Fang F, Pain CC, Navon IM, Gorman GJ, Piggott MD, Allison PA (2011) The independent set perturbation adjoint method: A new method of differentiating mesh-based fluids models. Int J  Numer Meth Fl 66(8): 976-999.

[29] Zhang U, Der Kiureghian A (1993) Dynamic response sensitivity of inelastic structures. Comput Method Appl 108(1): 23-36.

[30] Conte, Joel P, Michele Barbato, and Enrico Spacone. Finite element response sensitivity analysis using force-based frame models. Int J Numer Meth Eng 59.13 (2004): 1781-1820.

[31] Gu Q, Barbato M, Conte JP (2009) Handling of constraints in finite-element response sensitivity analysis. J Eng mech 135(12): 1427-1438.

[32] Huang X, Zuo ZH, Xie YM Evolutionary topological optimization of vibrating continuum structures for natural frequencies. Comput Struct 88(5): 357-364.

[33] Xie YM, Steven GP (1994) A simple approach to structural frequency optimization. Comput Struct 53(6): 1487-1491.

[34] Park JY, Han SY (2013) Application of artificial bee colony algorithm to topology optimization for dynamic stiffness problems. Computers Mathematics with Applications 66(10): 1879-1891.

[35] Wang F, Rui Z, Wei X (2006) Design of Structure Optimization with APDL. Science Technology and Engineering 21:006.

[36] Wei L, Tang T, Xie X, Shen W (2011) Truss optimization on shape and sizing with frequency constraints based on parallel genetic algorithm. Structural and Multidisciplinary Optimization 43(5): 665-682.

[37] Šešok D, Belevičius R (2007) Use of genetic algorithms in topology optimization of truss structures. Mechanika 64(2): 34-39.

[38] Rui-Wu XIA (2008) On APDL Parametric FEA Technology and Its Application. Development & Innovation of Machinery & Electrical Products 2: 046.

[39] Strain J, Miller E (2013) Introduction to the ANSYS Parametric Design Language (APDL). CreateSpace Independent Publishing Platform, USA.

[40] Lee KS, Geem ZW (2005) A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice. Comput Meth Appl Mech Eng 194(36): 3902-3933.

[41] Back T (1996) Evolutionary algorithms in theory and practice. Oxford Univ. Press.

[42] Rajeev S, Krishnamoorthy CS (1992) Discrete optimization of structures using genetic algorithms. J Struct Eng 118(5): 1233-1250.

[43] Li LJ, Huang ZB, Liu F (2009) A heuristic particle swarm optimization method for truss structures with discrete variables. Comput  Struct 87(7): 435-443.

[44] Tortorelli DA, Michaleris P (1994) Design sensitivity analysis: overview and review. Inverse problems in Engineering 1(1): 71-105.