بررسی تاثیر همزمان مدول‌های کششی- فشاری و برشی پیوندهای واندروالسی بر روی ارتعاشات نانوریبون‌های گرافنی دولایه با شرایط مرزی مختلف

نوع مقاله: مقاله مستقل

نویسندگان

1 استادیار مهندسی مکانیک، دانشگاه دامغان، دامغان

2 کارشناسی ارشد مهندسی مکانیک، دانشگاه علم و صنعت ایران، تهران

3 استاد مهندسی مکانیک، دانشگاه علم و صنعت ایران، تهران

چکیده

در این پژوهش، اثرات شرایط مرزی مختلف بر ارتعاشات آزاد نانوریبون‌های دو لایه برای حالتی که هر دو نوع اثرات کششی- فشاری و برشی پیوندهای واندروالسی بصورت همزمان در نظر گرفته شده باشند، بررسی شده است. به منظور مدل‌سازی نانوریبون دو لایه، از تئوری تیرهای ساندویچی استفاده شده است. در مراجع موجود تنها یکی از دو اثر کششی- فشاری و یا برشی پیوندهای واندروالسی مورد بررسی قرار گرفته است. در این پژوهش پیوندهای واندروالسی که نقش هسته مدل ساندیچی را ایفا می‌کنند، به گونه‌ای مدل‌سازی می‌شوند که تحمل هر دو نوع نیروی کششی- فشاری و برشی را داشته باشند. با استفاده از اصل همیلتون معادلات حاکم و شرایط مرزی استخراج می‌شوند. فرکانس‌های طبیعی و شکل مودهای نانوریبون دولایه به روش حل عددی مربعات دیفرانسیلی هارمونیک استخراج می‌گردند. به منظور صحت‌سنجی، نتایج بدست آمده با گزارش‌های موجود در مقالات در شرایطی که یکی از دو اثر حذف شده باشد مقایسه شده است و مطابقت خوب بدست آمده حاکی از دقت و صحت فرمولاسیون و روش حل عددی می‌باشد. تاثیرات تغییر شرایط مرزی و تغییر راستای برش بین لایه‌ای بر روی شکل مودها و ترتیب و اندازه فرکانس‌های طبیعی مورد مطالعه قرار گرفته است.

کلیدواژه‌ها

موضوعات


[1] Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6: 183-191.

[2]  Bunch JS, van der Zande AM, Verbridge SS, Frank IW, Tanenbaum DM, Parpia JM (2007) Electromechanical resonators from graphene sheets. Science 80: 315 490-493.

[3]  Robinson JT, Zalalutdinov M, Baldwin JW, Snow ES, Wei Z, Sheehan P (2008) Wafer-scale reduced graphene oxide films for nanomechanical devices. Nano Lett 8 :3441-3445.

[4]  Sun X, Liu Z, Welsher K, Robinson JT, Goodwin A, Zaric S (2008) Nano-graphene oxide for cellular imaging and drug delivery. Nano Res 1: 203-212.

[5]  Song Y, Qu K, Zhao C, Ren J, Qu X (2010) Graphene oxide: intrinsic peroxidase catalytic activity and its application to glucose detection. Adv Mater 22: 2206-2210.

[6]  Hu W, Peng C, Luo W, Lv M, Li X, Li D (2010) Graphene-based antibacterial paper. ACS Nano 4: 4317-4323.

[7]  Yang L, Zhang L, Webster TJ (2011) Carbon nanostructures for orthopedic medical applications. Nanomedicine 6: 1231-1244.

[8]  Balandin A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8: 902-907.

[9]  Hu J, Ruan X, Chen YP (2009) Thermal conductivity and thermal rectification in graphene nanoribbons: a molecular dynamics study. Nano Lett 9: 2730–2735.

[10] Jo G, Choe M, Lee S, Park W, Kahng YH, Lee T (2012) The application of graphene as electrodes in electrical and optical devices. Nanotechnology 23: 112001.

[11] Chang H, Wu H (2013) Graphene‐Based Nanomaterials: Synthesis, Properties, and Optical and Optoelectronic Applications. Adv Funct Mater 23: 1984-1997.

[12] Worsley MA, Pauzauskie PJ, Olson TY, Biener J, Satcher JHJ, Baumann TF (2010) Synthesis of graphene aerogel with high electrical conductivity. J Am Chem Soc 132: 14067-14069.

[13] Huang X, Qi X, Boey F, Zhang H (2012) Graphene-based composites. Chem Soc Rev 41: 666-686.

[14] Huang Y, Liang J, Chen Y (2012) The application of graphene based materials for actuators. J Mater Chem 22: 3671-3679.

[15] Barton RA, Ilic B, Zande AM, Whitney WS, McEuen PL, Parpia JM (2011) High, size-dependent quality factor in an array of graphene mechanical resonators. Nano Lett 11: 1232-1236.

[16] Georgantzinos SK, Giannopoulos GI, Anifantis NK (2010) Numerical investigation of elastic mechanical properties of graphene structures. Mater Des 31: 4646-4654.

[17] Nilsson J, Castro Neto A, Guinea F, Peres NMR, Neto AHC, Guinea F (2008)  Electronic properties of bilayer and multilayer graphene. Phys Rev B 78: 45405.

[18] Hosseini Kordkheili SA, Moshrefzadeh-Sani H, Kordkheili SAH, Moshrefzadeh-Sani H (2013) Mechanical properties of double-layered graphene sheets. Comput Mater Sci 69: 335-343.

[19] Murmu T, Adhikari S (2010) Nonlocal transverse vibration of double-nanobeam-systems. J Appl Phys 108: 83514.

[20] Shi JXJ, Ni QQQ, Lei XXW, Natsuki T (2011) Nonlocal elasticity theory for the buckling of double-layer graphene nanoribbons based on a continuum model. Comput Mater Sci 50: 3085-3090.

[21] Lin RM (2012) Nanoscale vibration characteristics of multi-layered graphene sheets. Mech Syst Signal Process 29: 251-261.

[22] He XQQ, Wang JBB, Liu B, Liew KMKM (2012) Analysis of nonlinear forced vibration of multi-layered graphene sheets. Comput Mater Sci 61: 194-199.

[23] Arghavan S, Singh A (2012) Effects of van der Waals interactions on the nonlinear vibration of multi-layered graphene sheets. J Phys D Appl Phys 45: 455305.

[24] Farajpour A, Arab Solghar A, Shahidi A, Solghar AA, Shahidi A (2013) Postbuckling analysis of multi-layered graphene sheets under non-uniform biaxial compression. Phys. E Low-Dimensional Syst Nanostructures. 47: 197-206.

[25] Jomehzadeh E, Saidi ARR (2011) A study on large amplitude vibration of multilayered graphene sheets. Comput Mater Sci 50: 1043-1051.

[26] Ansari R, Arash B, Rouhi H (2011) Vibration characteristics of embedded multi-layered graphene sheets with different boundary conditions via nonlocal elasticity. Compos Struct 93: 2419-2429.

[27] Pradhan S, Phadikar J (2009) Small scale effect on vibration of embedded multilayered graphene sheets based on nonlocal continuum models. Phys Lett A 373: 1062-1069.

[28] Ansari R, Arash B, Rouhi H (2011) Nanoscale vibration analysis of embedded multi-layered graphene sheets under various boundary conditions. Comput Mater Sci 50: 3091-3100.

[29] Rokni H, Lu W (2013) A continuum model for the static pull-in behavior of graphene nanoribbon electrostatic actuators with interlayer shear and surface energy effects. J Appl Phys 113: 1-10.

[30] Nazemnezhad R, Hosseini-hashemi S, Shokrollahi H (2014) Free vibration analysis of bilayer graphenes with interlayer shear effect. Modares Mech Eng 14: 131-138 (In Persian).

[31] Nazemnezhad R, Shokrollahi H, Hosseini-Hashemi S (2014) Sandwich beam model for free vibration analysis of bilayer graphene nanoribbons with interlayer shear effect. J Appl Phys 115: 174303.

[32] Liu Y, Xu Z, Zheng Q (2011) The interlayer shear effect on graphene multilayer resonators. J Mech Phys Solids 59: 1613-1622.

[33] Liu DY, Chen WQ, Zhang C (2013) Improved beam theory for multilayer graphene nanoribbons with interlayer shear effect. Phys. Lett. Sect. A Gen At Solid State Phys 377: 1297-1300.

[34] Shu C (2000) Differential quadrature and its application in engineering, Springer.

[35] Striz AG, Wang X, Bert CW (1995) Harmonic differential quadrature method and applications to analysis of structural components. Acta Mech 111: 85-94.