شبیه سازی انتقال حرارت جابجایی توام آزاد و اجباری در یک محفظه شیبدار با درپوش متحرک با استفاده از روش شبکه ی بولتزمن

نوع مقاله: مقاله مستقل

نویسندگان

دانشگاه آزاد اسلامی، واحد نجف آباد، گروه مهندسی مکانیک، نجف آباد، ایران

چکیده

جابجایی توام آزاد و اجباری ناشی از اثرات همزمان انتقال حرارت جابجایی آزاد و اجباری سیال در یک محفظه شیبدار دو بعدی با درپوش متحرک، به کمک روش شبکه بولتزمن و در مقادیر مختلف عدد ریچاردسون، زاویه ی شیب و عدد پرانتل مورد بررسی قرار می گیرد. در این حالت، مولفه های سرعت تحت تاثیر همزمان نیروهای اجباری، شناوری و اثر زاویه شیب محفظه بوده و لذا معادلات مورد استفاده در شبکه بولتزمن، مورد اصلاحاتی قرار خواهند گرفت. مقایسۀ نتایج حاصل با دیگر داده های در دسترس نیز تطابق مطلوبی را نشان می دهد. نتایج در قالب پروفیل های سرعت و دما، عدد نوسلت و کانتورهای تابع جریان و خطوط همدما ترسیم می شوند. مشاهده می شود که افزایش عدد پرانتل منجر به تقویت نرخ انتقال گرما، به ویژه در مقادیر بالاتر زاویه شیب و عددریچاردسون، خواهد شد. در انتها رابطه ای دقیق نیز برای محاسبه عدد نوسلت متوسط محفظه بر حسب عدد پرانتل، عدد ریچاردسون و زاویه شیب محفظه ارائه می گردد. همچنین دیده می شود که مقدار عدد نوسلت متوسط در بیشترین مقادیر مفروض برای زاویه شیب، عدد پرانتل و عدد ریچاردسون، تقریبا 7 برابر افزایش خواهد داشت.

کلیدواژه‌ها

موضوعات


[1] Grucelski A, Pozorski J (2012) Lattice Boltzmann simulation of fluid flow in porous media of temperature-affected geometry. Jof Theoretical and Applied Mech50: 193–214.

[2] Kefayati G, Hosseinizadeh S, Gorji M, Sajjadi H (2011) Lattice Boltzmann simulation of natural convection in tall enclosures using water/SiO2 nanofluid. Int Communications in Heat and Mass Transfer 38: 798–805.

[3] Peng Y, Shu C, Chew YT (2003) Simplified thermal lattice Boltzmann model for incompressible thermal flows. Physical Review E 68: 026701-1-8.

[4] Yang YT, Lai FH (2011) Numerical study of flow and heat transfer characteristics of alumina-water nanofluids in a microchannel using the lattice Boltzmann method. Int Communications in Heat and Mass Transfer 38: 607–614.

[5]Kandlikar SG, Garimella S, Li D, Colin S, King M (2006) Heat transfer and fluid flow in minichannels and microchannels. First ed., Britain: Elsevier.

[6] Karimipour A, HosseinNezhad A, D’Orazio A, Shirani E (2012) Investigation of the gravity effects on the mixed convection heat transfer in a microchannel using lattice Boltzmann method. Int Journal of Thermal Sciences 54: 142–152.

[7] Niu XD, Shu C, Chew YT (2007) A thermal lattice Boltzmann model with diffuse scattering boundary condition for micro thermal flows. Comput Fluids 36: 273–281.

[8] Tian Z, Chen S, Zheng CG (2010) Lattice Boltzmann simulation of gaseous finite-Knudsen microflows. Int J Mod Phys 21: 769–783.

[9] Chen H, Chen S, Mathaaeus WM (1992) Recovery of the Navier-Stokes equations using a lattice-gas Boltzmann method. Physical Review A 45: 5339–5342.

[10] Chen S, Doolen G (1998) Lattice Boltzmann method for fluid flows. Annual Rev Fluid Mech 30: 329–364.

[11] Oran ES, Oh CK, Cybyk BZ (1998) Direct Simulation Monte Carlo: Recent Advances and Applications. Ann Rev Fluid Mech 30: 403–441.

[12] نظری م، شکری ح (1392) جابه‌جائی آزاد در محفظه‌های نیم بیضی با نسبت شعاعی متغیر به روش بولتزمن شبکه­ای، مجله علمی پژوهشی مهندسی مکانیک مدرس 13(10): 1-13.

[13] Mohamad AA (2011) Lattice Boltzmann Method Fundamentals and Engineering Applications with Computer Codes.Springer, Canada.

[14] He X, Luo LS (1997) Lattice Boltzmann Model for the Incompressible Navier-Stokes Equation. J of Statistical Phy 88: 927–944.

[15] Buick JM, Greated CA (2000) Gravity in a lattice Boltzmann model. Phys Review E 61: 5307–5319.

[16] نظری م، کیهانی م ح، انارکی حاجی باقری آ (1392) مقایسه انتقال حرارت در یک محفظه بسته دارای لایه متخلخل عمودی و افقی به روش شبکه بولتزمن، مجله علمی پژوهشی مهندسی مکانیک مدرس 13(8): 93-107.

[17] نظری م، کیهانی م ح، شکری ح (1392) روش ‌بولتزمن‌شبکه­ای برای مدلسازی محفظه­های با مرز ‌مایل و متحرک، مجله علمی پژوهشی مهندسی مکانیک مدرس 13(5): 117-129.

[18] Kao PH, Yang RJ (2008) An investigation into curved and moving boundary treatments in the lattice Boltzmann method. Journal of Computational Physics 227: 5671–5690.

[19] Peng G, Xi H, Duncan C, Chou SH (1999) Finite volume scheme for the lattice Boltzmann method on unstructured meshes. Phys Rev E 59: 4675–4682.

[20] Cheng M, Hung KC (2002) Lattice Boltzmann method on nonuniform mesh. Recent Advances In Computational Science And Engineering: 196–199.

[21] Ubertini S, Succi S (2008) A Generalised Lattice Boltzmann Equation on Unstructured Grids.Communications in Computational Physics 3: 342–356.

[22] He X, Chen S, Doolen G (1998) A novel thermal model for the lattice Boltzmann method in incompressible limit. J of Comp Phys 146: 282–300.

[23] Guo Z, Zheng C, Shi B, Zhao TS (2007) Thermal lattice Boltzmann equation for low Mach number flows: Decoupling model. Phys Rev E 75: 1–15.

[24] Mezrhab A, Jami M, Abid C, Bouzidi M, Lallemand P (2006) Lattice-Boltzmann modelling of natural convection in an inclined square enclosure with partitions attached to its cold wall. Int J of Heat and Fluid Flow 27: 456–465.

[25] Jafari M, Naysari A, Bodaghi K (2011) Lattice Boltzmann Simulation of Natural Convection Heat Transfer in an Inclined Open Ended Cavity. World Academy of Science Engineering and Technology 78: 493–498.

[26] Sharif MAR (2007) Laminar mixed convection in shallow inclined driven cavities with hot moving lid on top and cooled from bottom. Applied Thermal Engineering 27: 1036–1042.

[27] Basak T, Roy S, Sharma PK, Pop I (2009) Analysis of mixed convection flows within a square cavity with linearly heated side wall(s). Int J of Heat and Mass Transfer 52: 2224–2242.

[28] Sivasankaran S, Sivakumar V, Prakash P (2010) Numerical study on mixed convection in a lid-driven cavity with non-uniform heating on both sidewalls. Int J of Heat and Mass Transfer 53: 4304–4315.

[29] Kao PH, Yang RJ (2007) Simulating oscillatory flows in Rayleigh–Bénard convection using the lattice Boltzmann method. Int J of Heat and Mass Transfer 50: 3315–3328.

[30] Parmigiani A, Huber C, Chopard B, Latt J, Bachmann O (2009) Application of the multi distribution function lattice Boltzmann approach to thermal flows. EurPhys J Special Topics 171: 37–43.

[31] Guo Y, Bennacer R, Shen S, Ameziani D, Bouzidi M (2010) Simulation of mixed convection in slender rectangular cavity with lattice Boltzmann method. Int J of Numerical Methods for Heat & Fluid Flow 20: 130–148.

[32] Fattahi E, Farhadi M, Sedighi K (2011) Lattice Boltzmann simulation of mixed convection heat transfer in eccentric annulus. Int Communications in Heat and Mass Transfer 38: 1135–1141.

[33] Du HY, Chai ZH, Shi BC (2011) Lattice Boltzmann study of mixed convection in a cubic cavity. CommunTheorPhys 56: 144–150.

[34] Rosdzimin ARM, Zuhairi SM, Azwadi CSN (2010) Simulation of mixed convective heat transfer using lattice Boltzmann method.Int J of Automotive and Mechanical Engineering 2: 130–143.

[35] Qian Y, Humières D, Lallemand P (1992) Lattice BGK models for Navier–Stokes equation. EurophysLett 17: 479–484.

[36] Bhatnagar PL, Gross EP, Krook M (1954) A model for collision process in gases. I. Small amplitude processes in charged and neutral one-component system. Phys Rev 94: 511–1954.

[37] Kuznik F, Vareilles J, Rusaouen G, Krauss G (2007) A double-population lattice Boltzmann method with non-uniform mesh for the simulation of natural convection in a square cavity. International Journal of Heat and Fluid Flow 28: 862–870.

[38] D’Orazio A, Corcione M, Celata G (2004) Application to natural convection enclosed flows of a lattice Boltzmann BGK model coupled with a general purpose thermal boundary condition. Int J of Thermal Science 43: 575–586.

[39] Zou Q, He X (1997) On pressure and velocity boundary conditions for the lattice Boltzmann BGK model. Phys Fluids 9: 1591–1598.

[40] D’Orazio A, Succi S, Arrighetti C (2003) Lattice Boltzmann simulation of open flows with heat transfer. Phys of Fluids 15: 2778-2780.

[41] Davis GV (1983) Natural convection of air in a square cavity: a benchmark numerical solution. Int J Numer Methods Fluids 3: 249–264.

[42] Iwatsu R, Hyun JM, Kuwahara K (1993) Mixed convection in a driven cavity with a stable vertical temperature gradient. Int J Heat Mass Transfer 36: 1601–1608.

[43] Habchi S, Acharya S (1986) Laminar mixed convection in a partially blocked, vertical channel. Int J Heat Mass Transfer 29: 1711–1722.