کنترل مقاوم بازوهای رباتیک با بکارگیری تخمین گر تطبیقی عصبی عدم قطعیت

نوع مقاله: مقاله مستقل

نویسندگان

دانشگاه صنعتی شاهرود

چکیده

این مقاله روشی نوین برای کنترل مقاوم بازوهای رباتیک با تخمین گر تطبیقی عدم قطعیت و راهبرد کنترل ولتاژ ارائه می نماید. تخمین گر پیشنهادی یک شبکه عصبی چند لایه است که پارامترهای آن با الگوریتم پس انتشار خطا تنظیم می شوند. نوآوری طرح مذکور در بکارگیری راهبرد کنترل ولتاژ است که با راهبرد متداول کنترل گشتاور فرق اساسی دارد. مزیت کنترل پیشنهادی آن است که مستقل از مدل دینامیکی ربات است. بعلاوه، مشکل فقدان اطلاعات برای تخمین تابع عدم قطعیت حل می شود. در واقع، بجای بکارگیری خطای تخمین در الگوریتم پس انتشار خطا از خطای ردگیری و مشتق آن بطور موثری استفاده می گردد. پایداری سیستم کنترل با تحلیل ریاضی اثبات می گردد. کارایی روش کنترل پیشنهادی و تخمین‌گر عدم قطعیت با شبیه سازی بر روی ربات اسکارا مجهز به موتورهای الکتریکی جریان مستقیم مغناطیس دائم نشان داده می شود. عملکرد روش کنترل پیشنهادی با روش کنترلی دیگر که از سیستم فازی برای تخمین عدم قطعیت استفاده می کند مقایسه می شود. نتایج شبیه سازی ها برتری روش پیشنهادی را در ردگیری، نقطه تنظیم و تخمین عدم قطعیت نشان می دهند.

کلیدواژه‌ها

موضوعات


[1] Kelly R, Santibanez V, Loria A (2005) Control of robot manipulators in joint space. Advanced Textbooks in Control and Signal Processing. Springer Press.

[2] Luh JYS (1983) Conventional controller design for industrial robots. A tutorial. IEEE Trans.Systems Man Cybernet 13: 298–316.

[3] Freund E (1982) Fast nonlinear control with arbitrary pole-placement for industrial robots and manipulators. Internat. J. Robotics Res 1: 65–78

[4] Craig JJ, Hsu P, Sastry SS (1987) Adaptive control of mechanical manipulators. Internat. J. Robotics Res 6(2): 10–20.

[5] Rohrs CE, Valavani LS, Athans M, stein G (1985) Robustness of continuous time adaptive control algorithms in the presence of unmodeled dynamics. IEEE Transactions. Automatic Control 30(9): 881–889.

[6] Abdallah C, Dawson D, Dorato P, Jamshidi M (1991) Survey of robust control for rigid robots. IEEE Control Systems: 24–30.

[7] Cai L, Song G (1994) Joint stick-slip friction compensation of robot manipulators by using smooth robust controllers. Journal of Robotic Systems 11(6): 451–470.

[8] Fateh MM (2010) Proper uncertainty bound parameter to robust control of electrical manipulators using nominal model. Nonlinear Dynamics  61(4): 655–666.

[9] Slotine JJE, Sastry SS (1983) Tracking control of nonlinear systems using sliding surfaces, with application to robot manipulator. Internat. J. Control 38: 465–492.

[10]  Chang FJ, Twu SH, Chang S (1990) Adaptive chattering alleviation of variable structure systems control. Proc. IEE. Pt. D 137: 31–39.

[11] Baicu C, Rahn C, Dawson D (1998)  Backstepping Boundary Control of Flexible Link Electrically Driven Gantry Robots. IEEE/ASME Transactions on Mechatronics 3(1): 60–66.

[12] Wang LX (1996) A Course in Fuzzy Systems and Control. Prentice Hall, New York.

[13] Lim CM, Hiyama T (1991) Application of fuzzy logic control to a manipulator. IEEE Trans. Robot. Autom 1(5): 688–691.

[14] Hwang  JP, Kim E (2006) Robust tracking control of an electrically driven robot: adaptive fuzzy logic approach. IEEE Trans. Fuzzy Syst 14(2): 232–247.

[15] Kim E (2004) Output feedback tracking control of robot manipulator with model uncertainty via adaptive fuzzy logic. IEEE Trans. Fuzzy Syst 12(3): 368–376.

[16] Chen FC, Khalil HK (1992) Adaptive control of nonlinear systems using neural networks Int. J. Contr 55(6): 1299–1317.

[17] Kwan C, Lewis FL, Dawson D (1998) Robust neural-network control of rigid-link electrically driven robots. IEEE Transactions on Neural Networks 9(4): 581–588.

[18] Huang SN, Tan KK, Lee TH (2008) Adaptive neural network algorithm for control design of rigid-link electrically driven robots, Neurocomputing 71(4-6): 885–894.

[19] Sun T, Pei H, Pan Y, Zhou H, Zhang C (2011) Neural network-based sliding mode adaptive control for robot manipulators. Neurocomputing 74(14-15): 2377–2384.

[20]  Wai RJ, Chen PC (2006) Robust Neural-Fuzzy-Network Control for Robot Manipulator Including Actuator Dynamics. IEEE Transactions on Industrial Electronics 53(4).

[21] Malis E, Chaumette F (2002) Theoretical improvements in the stability analysis of a new class of model-free visual servoing methods. IEEE Transactions on robotics and automation 18(2): 176–186.

[22]  Spong MW, Hutchinson S, Vidyasagar M (2006) Robot Modelling and Control. Wiley, Hoboken.

[23] Fateh MM (2008) On the Voltage-Based Control of Robot Manipulators. International Journal of Control, Automation and Systems 6(5): 702–712.

[24] Fateh  MM,  Khorashadizadeh S (2012)  Robust control of electrically driven robots by adaptive fuzzy estimation of uncertainty. Nonlinear Dynamics 69: 1465–1477.

[25] Anders U, and Korn O (1999( Model selection in neural networks. Neural Networks 12(2): 309–323.

[26] Fateh MM (2011) Robust control of flexible-joint robots using voltage control strategy. Nonlinear Dynamics 66(4): 2539–2549.