رفتار ارتعاشاتی میکروتیر مدرج محوری ویسکوالاستیک چرخان با حرکت طولی تحت بار محوری در میدان مغناطیسی براساس تئوری تنش کوپل اصلاح شده

نوع مقاله: مقاله مستقل

نویسندگان

1 دانشجوی کارشناسی ارشد، مهندسی مکانیک، دانشگاه تربیت مدرس، تهران

2 دکتری تخصصی، دانشکده مهندسی برق، مکانیک و کامپیوتر، دانشگاه ایوان‌کی، ایوان‌کی، ایران

10.22044/jsfm.2020.9508.3142

چکیده

رفتار ارتعاشاتی یک میکروتیر مدرج محوری با جفت حرکت‌های محوری و چرخشی تحت بارهای محوری در یک میدان مغناطیسی براساس تئوری تنش کوپل اصلاح شده بررسی شده است. یک مطالعه مفصل به‌منظور تحلیل اثر فاکتورهای مختلف مانند نرخ درجه‌بندی محوری مواد، نوع توزیع مواد، ضریب ویسکوزیته، شدت میدان مغناطیسی، پارامتر مقیاس طولی ماده، چرخش و حرکت عبوری کوپل بر مشخصات دینامیکی سیستم انجام‌شده است. فرض شده است مشخصات مادی سیستم در راستای طولی به‌صورت خطی یا نمایی تغییر می‌کنند. با استفاده از تکنیک گسسته سازی گالرکین و تحلیل مقدار ویژه، سرعت‌های محوری و چرخشی بحرانی سیستم به دست می‌آیند. یک روش تحلیلی نیز برای شناسایی آستانه‌های ناپایداری سیستم به‌کاربرده شده است. نقشه‌های پایداری سیستم آزموده شدند و نشان داده‌شده است که با افزایش شدت میدان مغناطیسی و پارامتر مقیاس طولی، پایداری سیستم بهبود می‌یابد. همچنین نتایج نشان داده‌اند که با تعیین هم‌زمان گرادیان چگالی و مدول الاستیک در راستای طولی می‌توان اثرات مخرب نیروی محوری فشاری را کاهش داد.

کلیدواژه‌ها


[1] Ebrahimi-Mamaghani A, Mirtalebi SH, Ahmadian MT (2020) Magneto-mechanical stability of axially functionally graded supported nanotubes. Mater Res Express 6(3): 1250-1255.

[2] Ebrahimi-Mamaghani A, Sarparast H, Rezaei M (2020) On the vibrations of axially graded Rayleigh beams under a moving load. Appl Math Model 84(3): 554-570.

[3] Ebrahimi-Mamaghani A, Sotudeh-Gharebagh R, Zarghami R, Mostoufi N (2019) Dynamics of two-phase flow in vertical pipes. J Fluid Struct 87(1): 150-173.

[4] Ebrahimi-Mamaghani A, Sotudeh-Gharebagh R, Zarghami R, Mostoufi N (2020) Thermo-mechanical stability of axially graded Rayleigh pipes. Mech Based Des Struc 1-30.

[5] Ebrahimi Mamaghani A, Hosseini R, Shahgholi M, Sarparast H (2018) Free lateral vibration analysis of inhomogeneous beams under various boundary conditions. Journal of Solid and Fluid Mechanics 8(1): 123-135. (In Persian)

[6] Ebrahimi Mamaghani A, sarparast H (2018) Target energy transfer from a doubly clamped beam subjected to the harmonic external load using nonlinear energy sink. Journal of Solid and Fluid Mechanics 8(9): 165-177. (In Persian)

[7] Hosseini R, Ebrahimi mamaghani A, Nouri M (2017) An Experimental Investigation into width reduction effect on the efficiency of piezopolymer vibration energy harvester. Journal of Solid and Fluid Mechanics 7(3): 41-51. (In Persian)

[8] Mamaghani AE, Khadem S, Bab S (2016) Vibration control of a pipe conveying fluid under external periodic excitation using a nonlinear energy sink. Nonlinear Dynam 86(1): 1761-1795.

[9] Mamaghani AE, Khadem SE, Bab S, Pourkiaee SM (2018) Irreversible passive energy transfer of an immersed beam subjected to a sinusoidal flow via local nonlinear attachment. Int J Mech Sci 138(8): 427-447.

[10] Mamaghani AE, Zohoor H, Firoozbakhsh K, Hosseini R (2013) Dynamics of a running below-knee prosthesis compared to those of a normal subject. Journal of Solid Mechanics 6(3): 152-160.

[11] Hosseini R, Hamedi M, Ebrahimi Mamaghani A, Kim HC, Kim J, Dayou J (2017) Parameter identification of partially covered piezoelectric cantilever power scavenger based on the coupled distributed parameter solution. Int J Smart Nano Mater 8(2): 110-124.

[12] Safarpour M, Rahimi A, Alibeigloo A, Bisheh H, Forooghi A (2019) Parametric study of three-dimensional bending and frequency of FG-GPLRC porous circular and annular plates on different boundary conditions. Mech Based Des Struc 1-31.

[13] Jermsittiparsert K, Ghabussi A, Forooghi A, Shavalipour A, Habibi M, Won Jung D, Safa M (2020) Critical voltage, thermal buckling and frequency characteristics of a thermally affected GPL reinforced composite microdisk covered with piezoelectric actuator. Mech Based Des Struc 1-23.

[14] Abdelmalek Z, Karbon M, Eyvazian A, Forooghi A, Safarpour H, Tlili I (2020) On the dynamics of a curved microtubule-associated proteins by considering viscoelastic properties of the living biological cells. J Biomol Struct Dyn 1-15.

[15] Esfahani S, Esmaeilzade Khadem S, Ebrahimi Mamaghani A (2019) Size-dependent nonlinear vibration of an electrostatic nanobeam actuator considering surface effects and inter-molecular interactions. Int J Mech Mater Des 15(1): 489-505.

[16] Esfahani S, Khadem SE, Mamaghani AE (2019) Nonlinear vibration analysis of an electrostatic functionally graded nano-resonator with surface effects based on nonlocal strain gradient theory. Int J Mech Sci 151(1): 508-522.

[17] Sarparast H, Ebrahimi-Mamaghani A (2019) Vibrations of laminated deep curved beams under moving loads. Compos Struct 226(3): 111262.

[18] Mirtalebi SH, Ahmadian MT, Ebrahimi-Mamaghani A (2019) On the dynamics of micro-tubes conveying fluid on various foundations. SN Appl Sci 1(1): 547.

[19] Mirtalebi SH, Ebrahimi-Mamaghani A, Ahmadian MT (2019) Vibration control and manufacturing of intelligibly designed axially functionally graded cantilevered macro/micro-tubes. IFAC-PapersOnLine 52(2): 382-387.

[20] Zhu, X., Lu, Z., Wang, Z., Xue, L., and Ebrahimi-Mamaghani, A. (2020). Vibration of Spinning Functionally Graded Nanotubes Conveying Fluid. Engineering with Computers. doi: 10.1007/s00366-020-01123-7.

[21] Kiani, K. (2014). Longitudinal and transverse instabilities of moving nanoscale beam-like structures made of functionally graded materials. Composite Structures 107(1):610-619.

[22] Li L, Zhang D (2015) Dynamic analysis of rotating axially FG tapered beams based on a new rigid–flexible coupled dynamic model using the B-spline method. Compos Struct 124(2): 357-367.

[23] Zhu K, Chung J (2019) Vibration and stability analysis of a simply-supported Rayleigh beam with spinning and axial motions. Appl Math Model 66(3): 362-382.

[24] Yang XD, Yang JH, Qian YJ, Zhang W, Melnik RV (2018) Dynamics of a beam with both axial moving and spinning motion: An example of bi-gyroscopic continua. Eur J Mech A-Solid 69(3): 231-237.

[25] Ghayesh MH, Ghazavi MR, Khadem SE (2010) Non-linear vibration and stability analysis of an axially moving rotor in sub-critical transporting speed range. Struct Eng Mech 34(5): 507-523.

[26] Sahebkar S, Ghazavi M., Khadem S, Ghayesh M (2011) Nonlinear vibration analysis of an axially moving drillstring system with time dependent axial load and axial velocity in inclined well. Mech Mach Theory 46(6): 743-760.

[27] Li X, Qin Y, Li Y, Zhao X (2018) The coupled vibration characteristics of a spinning and axially moving composite thin-walled beam. Mech Adv Matl Struct 25(5): 722-731.

[28] Rezaee M, Lotfan S (2015) Non-linear nonlocal vibration and stability analysis of axially moving nanoscale beams with time-dependent velocity. Int J Mech Sci 96(2): 36-46.

[29] Zinati RF, Rezaee M, Lotfan S (2019) Nonlinear vibration and stability analysis of viscoelastic rayleigh beams axially moving on a flexible intermediate support. Iranian Journal of Science and Technology, Transactions of Mechanical Engineering 1-15.

[30] Ghayesh MH (2011) Nonlinear forced dynamics of an axially moving viscoelastic beam with an internal resonance. Int J Mech Sci 53(1): 1022-1037.

[31] Dehrouyeh-Semnani AM, Nikkhah-Bahrami M, Yazdi MRH (2017) On nonlinear stability of fluid-conveying imperfect micropipes. Int J Eng Sci 120(2): 254-271.

[32] Bahaadini R, Saidi AR (2018) On the stability of spinning thin-walled porous beams. Thin Wall Struct 132(5): 604-615.

[33] Bahaadini R, Saidi AR (2018) Stability analysis of thin-walled spinning reinforced pipes conveying fluid in thermal environment. Eur J Mech A-Solid 72(1): 298-309.

[34] Dehrouyeh-Semnani AM, Nikkhah-Bahrami M, Yazdi MRH (2017) On nonlinear stability of fluid-conveying imperfect micropipes. Int J Eng Sci 120(2): 254-271.

[35] Filipich C, Maurizi M, Rosales M (1987) Free vibrations of a spinning uniform beam with ends elastically restrained against rotation. J Sound Vib 116(2): 475-482.