ارتعاشات آزاد پوسته مخروطی مدرج تابعی چرخان با وصله‌های از جنس مواد هوشمند

نوع مقاله: طرح پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد مهندسی مکانیک، دانشکده مهندسی مکانیک، دانشگاه خواجه نصیرالدین طوسی، تهران

2 استاد، دانشکده مهندسی مکانیک، دانشگاه خواجه نصیرالدین طوسی، تهران

3 استادیار، دانشکده مهندسی مکانیک، دانشگاه کاشان، کاشان

10.22044/jsfm.2020.9504.3143

چکیده

در مقاله حاضر ارتعاشات آزاد پوسته مخروطی چرخان با وصله‌های هوشمند چسبیده به آن بررسی می‌شود. پوسته به صورت جدار نازک در نظر گرفته شده و همچنین معادلات سیستم از روش انرژی بدست آورده شده است. وصله ها به صورت جفت در داخل و روی پوسته هستند که تعدادشان چهار است و نقش سنسور و عملگر را در کنترل سازه بازی می کنند. با استفاده از نظریه کلاسیک، روابط کرنش- جابه جایی لاو، روابط تنش-کرنش هوک و در ادامه از طریق پاسخ های حدس زده شده که در آنها توابع مکانی معلوم و توابع زمانی مجهول است و همچنین معادله لاگرانژ، دینامیک حاکم بر سیستم به صورت ODE بدست آمده است. حسن این روش عدم استفاده از اصل همیلتون و درگیر نشدن در مشتق گیری و انتگرال های جز به جز است. فرکانس های طبیعی در دو حالت وجود و عدم وجود مواد هدفمند و همچنین در دو شرط مرزی با نتایج پژوهش های قبلی مقایسه گردیده و پس از آن اثر سرعت دورانی، مساحت وصله ها، شرایط مرزی و ضریب ناهمگنی هر دو ماده مدرج تابعی (پوسته و ماده هدفمند) روی فرکانس طبیعی بررسی می شود.

کلیدواژه‌ها


[1] Alibeigloo A, Kani AM, Pashaei MH (2012)   Elasticity solution for the free vibration analysis of functionally graded cylindrical shell bonded to thin piezoelectric layers. Int J Pres Ves Pip 89: 98-111.

[2] Arefi M, Karroubi R, Irani-Rahaghi M (2016) Free vibration analysis of functionally graded laminated sandwich cylindrical shells integrated with piezoelectric layer. Appl Math Mech-Engl 37: 821-834.

[3] Shekari A, Ghasemi FA, Malekzadehfard K, (2017) Free damped vibration of rotating truncated conical sandwich shells using an improved high-order theory. Lat Am J Solids Struc 14: 2291-2323.

[4] Sheng GG, Wang X (2009) Active control of functionally graded laminated cylindrical shells. Compos Struct 90: 448-457.

[5] Li FM, Song ZG, Chen ZB (2012) Active vibration control of conical shells using piezoelectric materials. J Vib Control 18: 2234-2256.

[6] Arefi M, Arefi M (2019) Third-order electro-elastic analysis of sandwich doubly curved piezoelectric micro shells. Mech Based Des Struc 1-30.

[7] فرنام م، غیور م (1393) تحلیل ارتعاشات پوسته­های مخروطی شکل چرخان با ویژگی­های عملکردی درجه بندی شده. پایان نامه کارشناسی ارشد، دانشگاه صنعتی اصفهان.

[8] Li H, Lam KY, Ng TY (2005) Rotating shell dynamics. Elsevier.

[9] Tzou HS (1993) Piezoelectric shells. Dordrecht: Kluwer.

[10] Talebitooti M (2018) Thermal effect on free vibration of ring-stiffened rotating functionally graded conical shell with clamped ends. Mech Adv Mater Struc 25:155-165

[11] Arefi M (2015) The effect of different functionalities of FGM and FGPM layers on free vibration analysis of the FG circular plates integrated with piezoelectric layers. Smart Struct Syst 15: 1345-1362.

[12] جعفری نیاسر م، جعفری ع ع، ایرانی رهقی م (1398) بررسی تاثیر وصله‌های پیزوالکتریک روی فرکانس ارتعاشات روتور پوسته‌ی مخروطی ساخته شده از مواد مدرج تابعی. کنفرانس بین المللی آکوستیک و ارتعاشات.

[13] Karroubi R, Irani-Rahaghi M (2019) Rotating sandwich cylindrical shells with an FGM core and two FGPM layers: free vibration analysis. Appl Math Mech-Engl 40: 563-578.

[14] Song ZG, Zhang LW, Liew KM (2016) Active vibration control of CNT-reinforced composite cylindrical shells via piezoelectric patches. Compos Struct 92-100.

[15] Wang J, Cao Y, Lin G (2016) Vibration analysis of high-speed rotating conical shell with arbitrary boundary conditions. Proc Meet Acoust 29: 065001

[16] Sun S, Liu L, Cao D (2018) Nonlinear travelling wave vibrations of a rotating thin cylindrical shell. J sound vib 431:122-136.

[17] Soedel W, Qatu MS (2005) Vibrations of shells and plates. CRC Press.

[18] Han Q, Chu F (2014) Parametric resonance of truncated conical shells rotating at periodically varying angular speed. J sound vib 333:2866-2884.

[19] Mehralian F, Beni YT (2018) Vibration analysis of size-dependent bimorph functionally graded piezoelectric cylindrical shell based on nonlocal strain gradient theory. J Braz Soc Mech Sci 40:27.

[20] Daneshjou K, Talebitooti M, Talebitooti R, Googarchin HS, (2013). Dynamic analysis and critical speed of rotating laminated conical shells with orthogonal stiffeners using generalized differential quadrature method. Lat Am J Solids Stru 10: 349-390.