شبیه‌سازی عددی انتقال حرارت جابجایی طبیعی پایا و ناپایای نانوسیال در فضای بین حلقه‌های هم‌مرکز و غیر هم‌مرکز در یک محیط متخلخل

نوع مقاله: مقاله مستقل

نویسندگان

1 کارشانسی ارشد، دانشکده مهندسی مکانیک و مکاترونیک، دانشگاه صنعتی شاهرود، شاهرود، ایران

2 دانشیار، دانشکده مهندسی مکانیک و مکاترونیک، دانشگاه صنعتی شاهرود، شاهرود، ایران

10.22044/jsfm.2020.8886.3013

چکیده

در این مقاله به شبیه‌سازی عددی پدیده انتقال حرارت جابجایی طبیعی پایا و ناپایای نانوسیال در فضای بین حلقه‌های هم‌مرکز و غیر هم‌مرکز پرشده از یک ماده متخلخل پرداخته شده است. معادلات حاکم بر جریان سیال شامل معادلات بقای جرم، ممنتوم و انرژی به کمک روش عددی تفاضل محدود گسسته و در حل آنها از روش ضمنی جهت متغیر (ADI) و روش فوق تخفیفی (SOR) استفاده شده است. در پژوهش حاضر به بررسی اثرات عدد رایلی، کسر حجمی نانوسیال (در محدوده 0 تا 4 درصد)، عدد دارسی، ضریب تخلخل محیط متخلخل و نسبت خروج از مرکز دو حلقه بر مقدار عدد ناسلت متوسط، عدد ناسلت محلی، خطوط جریان و خطوط هم‌دما و تغییرات آنها با زمان پرداخته شده است. نتایج حاصل از شبیه‌سازی عددی نشان می‌دهد که با افزایش عدد رایلی، ضریب تخلخل و کسر حجمی نانوذرات، میزان انتقال حرارت افزایش می‌یابد. کاهش عدد دارسی باعث کاهش نفوذپذیری محیط متخلخل شده و در نتیجه انتقال حرارت کاهش می‌یابد. در شرایط ناپایا با افزایش دامنه نوسان دمای دیواره داخلی (به دلیل افزایش گرادیان دمایی بین دو دیواره)، دامنه تغییرات عدد ناسلت متوسط نیز افزایش می‌یابد. همچنین نتایج شبیه‌سازی نشان می‌دهد فرکانس تغییرات عدد ناسلت متوسط بر فرکانس تغییرات دمایی دیواره داخلی منطبق خواهد بود.

کلیدواژه‌ها


[1] Choi SUS (1995) Enhancing thermal conductivity of fluids with nanoparticles. in: Developments and application of Non Newtonian Flows, ASME 66: 99-105.

[2] Heyda J (1959) A green function solution for the laminar incompressible flow between non concentric cylinders. J Franklin I 267: 25-34.

[3] Lundberg RE, McCuen PA, Reynolds WC (1963) Heat transfer in annular passages. Hydrodynamically developed laminar flow with arbitrarily prescribed wall temperatures or heat fluxes. Int J Heat Mass Tran 6(6): 483-529.

[4] Trombetta ML (1971) Laminar forced convection in eccentric annuli. Int J Heat Mass Tran 14(8): 1161-1173.

[5] Kuehn TH, Goldstein RJ (1976) An experimental and theoretical study of natural convection in the annulus between horizontal concentric cylinders. J Heat Transf 74: 695-719.

[6] Kuehn TH, Goldstein RJ (1978) An experimental study of natural convection heat transfer in eccentric horizontal cylindrical annuli. J Heat Transf 100(4): 635-640.

[7] Aldoss  TK, Alkam M, Shatarah M (2004) Natural convection from a horizontal annulus partially filled with porous medium. Int Commun Heat Mass 31(3):  441-452.

[8] Leong JC, Lai FC (2006) Natural convection in a concentric annulus with a porous sleeve. Int J Heat Mass Tran 49: 3016-3027.

[9] Khanafer K, Al-Amiri AA, Pop I (2008) Numerical analysis of natural convection heat transfer in a horizontal annulus partially filled with a fluid-saturated porous substrate. Int J Heat Mass Tran 51: 1613-1627.

[10] Abu-Nada E (2009) Effects of variable viscosity and thermal conductivity of Al2O3–water nanofluid on heat transfer enhancement in natural convection. Int J Heat Fluid Fl 30(4): 679-690.

[11] Yu ZT, Xu X, Hu YC, Fan LW, Cen KF (2012) A numerical investigation of transient natural convection heat transfer of aqueous nanofluids in a horizontal concentric annulus. Int J Heat Mass Tran 55(4): 1141-1148.

[12] Matin MH, Pop I (2013) Natural convection flow and heat transfer in an eccentric annulus filled by copper nanofluid. Int J Heat Mass Tran 61: 353-364.

[13] Seyyedi S, Dayyan M, Soleimani S, Ghasemi        E (2015) Natural convection heat transfer         under constant heat flux wall in a nanofluid filled annulus enclosure. Ain Shams Eng J 6(1):          267-280.

[14] Belabid J, Cheddadi A (2014) Comparative numerical simulation of natural convection in a porous horizontal cylindrical annulus. Appl Mech Mater (670-671): 613-616.

[15] Bahiraei M, Hosseinalipour SM, Hangi M     (2014) Heat transfer and flow characteristics of nanofluid in a narrow annulus: Numerical study, modelling and optimisation. Can J Chem Eng 92(4): 747-757.

[16] Alawi OA, Sidik NAC, Dawood HK (2014) Natural convection heat transfer in horizontal concentric annulus between outer cylinder and inner flat tube using nanofluid. Int J Heat Mass Tran 57: 65-71.

[17] Zhang C, Zheng L, Jiang Y, Zhang X (2015) Unsteady natural convection heat transfer of nanofluid in an annulus with a sinusoidally heated source. Numer Heat Tr A-Appl 69(1): 97-108.

[18] El-Maghlany WM, Elazm MMA (2016)    Influence of nanoparticles on mixed convection heat transfer in an eccentric horizontal annulus with rotating inner cylinder. J Taiwan Inst Chem E 63: 259-270.

[19] Hu Y, Li D, Shu S, Niu X (2017) Natural convection in a nanofluid filled eccentric annulus with constant heat flux wall : A lattice Boltzmann study with immersed boundary method. Adv Appl Math Mech 86: 262-273.

[20] Teimouri H, Sheikhzadeh GA, Afrand M, Fakhari MM (2017) Mixed convection in a rotating eccentric annulus containing nanofluid using bi-orthogonal grid types : A finite volume simulation. J Mol Liq 227:114-126.

[21] Wei Y, Wang Z, Qian Y, Guo W (2018) Study on bifurcation and dual solutions in natural convection in a horizontal annulus with rotating inner cylinder using thermal immersed boundary-lattice boltzmann method. Entropy 20(10): 733, 1-15.

[22] Xiufeng Y, Charng KS (2019) Numerical study of natural convection in a horizontal concentric annulus using smoothed particle hydrodynamics. Eng Anal Bound Elem 102: 11-20.

[23] Hämmerlin G, Hoffmann KH (1991) Numerical Mathematics. 1st edn. Springer-Verlag, New York.

[24] Cheddadi A, Caltagirone JP, Mojtabi A, Vafai K (1992) Free two-dimensional convective bifurcation in a-horizontal annulus. J Heat Transf 114: 99-114.

[25] Mizushima J, Hayashi S, Adachi T (2001) Transitions of natural convection in a horizontal annulus. Int J Heat Mass Tran 44: 1249-1257.