تعیین جرم با استفاده از تحلیل تئوری و تجربی پاسخ فرکانسی عملگرهای پیزوالکتریک خمشی

نوع مقاله: مقاله مستقل

نویسندگان

1 دانشجو کارشناسی ارشد، مهندسی مکانیک، دانشگاه صنعتی امیرکبیر (پلی تکنیک تهران)، تهران، ایران

2 استادیار، مهندسی مکانیک، دانشگاه صنعتی امیرکبیر (پلی تکنیک تهران)، تهران، ایران

3 استادیار، مهندسی مکانیک، پژوهشکده فناوری‌های نو، دانشگاه صنعتی امیرکبیر (پلی تکنیک تهران)، تهران، ایران

10.22044/jsfm.2020.8307.2887

چکیده

در این پژوهش به بررسی فرآیند تعیین جرم به کمک تحلیل پاسخ فرکانسی عملگرهای پیزوالکتریک پرداخته شده است. برای تقویت خاصیت عملگری، کاهش اثرات غیرخطی و کوپلینگ ارتعاشات، از عملگرهای پیزوالکتریک دو لایه استفاده شده است. برای این منظور، ابتدا تئوری تعیین جرم توسط تحلیل پاسخ فرکانسی عملگرهای پیزوالکتریک خمشی، مورد بررسی قرار گرفته است. سپس معادله دینامیک حاکم بر رفتار عملگرهای دو لایه پیزو استخراج و پاسخ فرکانسی سیستم در حالت آزاد مورد تحلیل قرار گرفته است. در ادامه، اثر افزدون جرم بر پاسخ فرکانسی عملگر دولایه و نحوه استخراج مقدار جرم، بصورت تحلیلی ارائه گردیده است. در نهایت، نتایج شبیه سازی توسط آزمایش‌های تجربی صحه گذاری شده است. نتایج حاصل شده نشان می‌دهد اگر جرم‌های اندازه‌گیری شده در مرتبه میلی گرم در بازه ۰۱/۰ تا ۲/۰ جرم عملگر باشد، اندازه‌گیری دارای خطای تقریبی کمتر از ۱3 درصد بوده و می‌توان از این عملگرها با دقت مناسبی برای اندازه‌گیری جرم استفاده نمود.

کلیدواژه‌ها


[1]  Bashash S, Salehi-Khojin A, Jalili N, et al. (2009) Mass detection of elastically distributed ultrathin layers using piezoresponse force microscopy. J Micromech Microeng 19: 025016.

[2]  Lavrik NV, Datskos PG (2003) Femtogram mass detection using photothermally actuated nanomechanical resonators. Appl Phys Lett 82: 2697-2699.

[3]  Roman C, Ciontu F, Courtois B (2004)          Single molecule detection and macromolecular weighting using an all-carbon-nanotube nanoelectromechanical sensor. Nanotechnology, 2004. 4th IEEE Conference on. IEEE, 263-266.

[4]  McGrath T, Elliott C and Fodey T (2012) Biosensors for the analysis of microbiological and chemical contaminants in food. Anal Bioanal Chem 403: 75-92.

[5]  Sharma H, Mutharasan R (2013) Rapid and sensitive immunodetection of Listeria monocytogenes in milk using a novel piezoelectric cantilever sensor. Biosens Bioelectron 45: 158-162.

[6]  Boudjiet MT, Bertrand J, Pellet C, et al. (2014) New characterization methods for monitoring small resonant frequency variation: Experimental tests in the case of hydrogen detection with uncoated silicon microcantilever-based sensors. Sensor Actuat B-Chem 199: 269-276.

[7]  Ghafarirad H, Rezaei SM, Sarhan AADM, et al. (2015) Modified robust external force control with disturbance rejection with application to piezoelectric actuators. T I Meas Control 37: 131-143.

[8] حسینی ر، لطافتی م، حسینی مقدم س (۲۰۱۷) برداشت انرژی ارتعاشی با استفاده از تیر یک سردرگیر با دولایه پیزوالکتریک. مجله مکانیک سازه­ها و شاره­ها 9-1 :7.

[9] عطار ع، طهماسبی پور م، دهقان م (2018) بررسی تاثیر پارامترهای هندسی بر جابه جایی خارج از صفحه میکروتیر پیزوالکتریکی با سطح مقطع T شکل. مجله مکانیک سازه­ها و شاره­ها 9-1 :8.

[10] Erturk A, Inman DJ (2008) On mechanical modeling of cantilevered piezoelectric vibration energy harvesters. J Intel Mat Syst Str 19: 1311-1325.

[11] Bashash S, Saeidpourazar R, Jalili N (2010) Development, analysis and control of a high-speed laser-free atomic force microscope. Rev Sci Instrum 81: 023707.

[12] Leadenham S, Erturk A. (2015) Unified nonlinear electroelastic dynamics of a bimorph piezoelectric cantilever for energy harvesting, sensing, and actuation. Nonlinear Dynam 79: 1727-1743.

[13] Xu Q (2013) Precision position/force interaction control of a piezoelectric multimorph microgripper for microassembly. IEEE T Autom Sci Eng 10: 503-514.

[14] Shim S, Kim MG, Jo K, et al. (2010) Dynamic characterization of human breast cancer cells using a piezoresistive microcantilever. J Biomech Eng-T ASME 132: 104501.

[15] Botta F, Rossi A and Belfiore NP. (2019) A feasibility study of a novel piezo MEMS tweezer for soft materials characterization. Appl Sci 9: 2277.

[16] Gurjar M, Jalili N (2007) Toward ultrasmall mass detection using adaptive self-sensing piezoelectrically driven microcantilevers. IEEE-ASME T Mech 12: 680-688.

[17] Shen Z, Shih WY, Shih WH (2006) Self-exciting, self-sensing Pb Zr 0.53 Ti 0.47 O 3∕ Si O 2 piezoelectric microcantilevers with femtogram/Hertz sensitivity. Appl Phys Lett 89: 023506.

[18] Zurn S, Hsieh M, Smith G, et al. (2001) Fabrication and structural characterization of a resonant frequency PZT microcantilever. Smart Mater Struct 10: 252.

[19] Yi JW, Shih WY, Shih WH (2002) Effect of length, width, and mode on the mass detection sensitivity of piezoelectric unimorph cantilevers. J Appl Phys 91: 1680-1686.

[20] Shen Z, Shih WY, Shih WH (2006) Mass detection sensitivity of piezoelectric cantilevers with a nonpiezoelectric extension. Rev Sci Instrum 77: 065101.

[21] Yi JW, Shih WY, Mutharasan R, et al. (2003) In situ cell detection using piezoelectric lead zirconate titanate-stainless steel cantilevers. J Appl Phys 93: 619-625.

[22] Clément P, Perez EDC, Gonzalez O, et al. (2016) Gas discrimination using screen-printed piezoelectric cantilevers coated with carbon nanotubes. Sensor Actuat B-Chem 237: 1056-1065.

[23] Ahmed MGA, Dennis J, Khair MHM, et al. (2016) Modeling, simulation and experimental validation of the properties of macro-scale piezoelectric cantilevers for deduction of mass sensitivity of micro-cantilevers. Int J Appl Eng Res 11: 4512-4520.

[24] Aghamohammadi M, Shamshirsaz M, Rezaie AH (2018) Performance of I-shaped piezoelectric-excited millimeter-sized cantilever in sensing applications: Modeling, simulation and experiment. Microsyst Technol 24: 527-535.

[25] Joshi P, Kumar S, Jain V, et al. (2019) Distributed MEMS mass-sensor based on piezoelectric resonant micro-cantilevers. J Microelectromech S 28: 382-389.

[26] Zhao J, Wen X, Huang Y, et al. (2019) Piezoelectric circuitry tailoring for resonant mass sensors providing ultra-high impedance sensitivity. Sensor Actuat A-Phys 285: 275-282.

[27] Ebrahimi M, Ghafarirad H, Zareinejad M (2018) Transverse and longitudinal dynamic modeling of bimorph piezoelectric actuators with investigating the effect of vibrational modes. Journal of Theoretical and Applied Vibration and Acoustics 4: 99-124.

[28] Beer FP, Johnston R, Dewolf J, et al. (2006) Mechanics of Materials. McGraw-Hill, Boston.

[29] Ghafarirad H, Rezaei S, Sarhan AA, et al. (2015) Continuous dynamic modelling of bimorph piezoelectric cantilevered actuators considering hysteresis effect and dynamic behaviour analysis. Math Comp Model Dyn 21: 130-152.

[30] Erturk A, Inman DJ (2008) A distributed parameter electromechanical model for cantilevered piezoelectric energy harvesters. J Vib Acoust 130: 041002.