عیب یابی چرخ دنده بر پایه انتخاب مناسب ترین ویژگی به کمک الگوریتم بهینه سازی ازدحام ذرات

نوع مقاله : مقاله مستقل

نویسندگان

1 استاد، دانشکده مهندسی مکانیک، دانشگاه گیلان، رشت

2 دانشجوی دکتری، دانشکده مهندسی مکانیک، دانشگاه گیلان، رشت

3 کارشناسی ارشد، موسسه آموزش عالی غیر انتفاعی غیر دولتی احرار، رشت

چکیده

در این مقاله، روش جدیدی برای عیب‌یابی در چرخ‌دنده‌ها ارایه شده است. سیگنال‌های ارتعاشی مجموعه جعبه‌دنده در سه حالت سالم، لب‌پریدگی دندانه و ساییدگی دندانه جمع‌آوری شده‌اند. این سیگنال‌ها با استفاده از روش تجزیه مود تجربی به تعدادی توابع مود ذاتی تجزیه شده‌اند. با توجه به این که همه توابع مود ذاتی به دست آمده از روش تجزیه مود تجربی، مناسب برای عیب‌یابی نیستند، از مفهوم همبستگی متقابل برای انتخاب مناسب‌ترین تابع مود ذاتی استفاده شده است. سپس، با به کارگیری توابع آماری مختلف، ماتریس ویژگی متناظر با هر حالت چرخ‌دنده، استخراج شده است. ماشین بردار پشتیبان چند کلاسه از نوع «یک در برابر یک» برای طبقه‌بندی عیوب به کار گرفته شده است. از آنجایی که تمامی ویژگی‌های استخراج شده برای عیب‌یابی مناسب نیستند و ماشین بردار پشتیبان دارای پارامترهایی است که باید تنظیم شوند، از این رو، از الگوریتم بهینه‌سازی ازدحام ذرات برای انتخاب مناسب‌ترین ویژگی و تعیین پارامترهای بهینه ماشین بردار پشتیبان استفاده شده است. تابع هدف در این مقاله، دقت طبقه‌بندی کننده‌ی ماشین بردار پشتبان در پیش-بینی حالت جعبه‌دنده می‌باشد. نتایج به دست آمده نشان می‌دهد که ویژگی‌های انتخاب شده در این روش و ماشین بردار پشتیبان بهینه شده دارای توانایی عالی در طبقه‌بندی عیوب می‌باشند.

کلیدواژه‌ها

موضوعات


[1] Lei Y, Lin J, He Z, Zuo M (2013) A review on empirical mode decomposition in fault diagnosis of rotating machinery. Mech Syst Signal Process 35: 108-126.
[2] Ben Ali J, Fnaiech N, Saidi L, Chebel-Morello       B, Fnaiech F (2015) Application of empirical   mode decomposition and artificial neural      network for automatic bearing fault diagnosis   based on vibration signals. Appl Acoust 89: 16-   27.
[3] چایی­بخش ع، رهبر م (1395) مقایسه­ای بین تجزیه حالت تجربی و تبدیل موجک در تشخیص نابالانسی ماشین دوار با استفاده از ماشین بردار پشتیبان بهینه. مجله علمی پژوهشی مهندسی مکانیک مدرس 332-325: (2)17.
[4]  Rajeswari C, Sathiyabhama B, Devendiran S, Manivannan K (2014) A gear fault identification using wavelet transform, rough set based GA,   ANN and C4.5 algorithm. Procedia Eng 97: 1831-1841.
[5]  Bordoloi DJ, Tiwari R (2014) Support vector machine based optimization of multi-fault classification of gears with evolutionary algorithms from time–frequency vibration data. Measurement 55: 1-14.
[6]  Bordoloi DJ, Tiwari R (2014) Optimum multi-fault classification of gears with integration of evolutionary and SVM algorithms. Mech Mach Theory 73: 49-60.
[7] Bordoloi DJ, Tiwari R, (2015) Optimisation of SVM methodology for multiple fault taxonomy of rolling bearings from acceleration records. 9th IFToMM International Conference on Rotor Dynamics Mechanisms and Machine Science 21: 533-542.
[8] Liu Z, Cao H, Chen X, He Z, Shen Z (2013) Multi-fault classification based on wavelet SVM with PSO algorithm to analyze vibration signals from rolling element bearings. Neurocomputing 99: 399-410.
[9]  Jack LB, Nandi AK (2002) Fault detection using support vector machines and artificial neural networks, augmented by genetic algorithms. Mech Syst Signal Process, 16 (2-3): 373-390.
[10] Dalian Y, Liyong M (2015) Gear fault diagnosis based on support vector machine optimized by artificial bee colony algorothm. Mech Mach Theory 90: 219-229.
[11] Ziani R, Felkaoui A, Zegadi R (2017) Bearing fault diagnosis using multiclass support vector machines with binary particle swarm optimization and regularized fisher’s criterion. J Intell Manuf 28(2): 405-417.
[12] Zhang X, Zhang Q, Chen M, Sun Y, Qin X, Li H (2018) A two-stage feature selection and intelligent fault diagnosis method for rotating machinery using hybrid filter and wrapper method. Neurocomputing 275: 2426-2439.
[13] Tabrizi A, Garibaldi L, Fasana A, Marchesiello S (2014) Influence of stopping criterion for sifting process of empirical mode decomposition (EMD) on roller bearing fault diagnosis. Advances in Condition Monitoring of Machinery in Non-Stationary Operations Lecture Notes in Mechanical Engineering 389-398.
[14] Dhamandeh SL, Chaudhari BM, (2016) Detection of Combined gear-bearing fault in single stage spur gear box using artificial neural network. Procedia Eng 144: 759-766.
[15] Pirra M, Fasana A, Garibaldi L, Marchesiello S (2012) Damage identification and external effects removal for roller bearing diagnostics. European Conference of the Prognostics and Health Management Society, Germany 1-8.
[16] Djebala A, Babouri MK, Ouelaa, N (2015) Rolling bearing fault detection using a hybrid method based on empirical mode decomposition and optimized wavelet multi-resolution analysis. Int J Adv Manuf Tech 79: 2093-2105.
[17] Zamanian AH, Ohadi A (2011) Gear fault diagnosis based on gaussian correlation of vibrations signals and wavelet coefficients. Appl Soft Comput 11: 4807-4819.
[18] Zhong J, Ma W, Lin J, Ma L, Jia X (2014) Fault diagnosis approach for rotating machinery based on dynamic model and computational intelligence. Measurement 59: 73-87.
[19] Widodo A, Yang BS (2007) Support vector machine in machine condition monitoring and fault diagnosis. Mech Syst Signal Process 21(6): 2560-2574.
[20] Tabrizi AA (2015) Development of new fault detection methods for rotating machines (roller bearings). PhD thesis, University of Politecnico di Torino.
[21] Jin S, Kim SJ, Lee KS (2015) Sensitive method for detecting tooth faults in gearboxes based on wavelet denoising and empirical mode decomposition. J Mech Science Tech 29(8): 3165-3173.
[22] Shi Y, Eberhart R, (1998) A modified particle swarm optimizer. In: The 1998 IEEE International Conference on Evolutionary Computation Proceedings, Anchorage, AK 69-73.
[23] Ratnaweera A, Halgamuge SK, Watson HC (2004) Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients. IEEE T Evolut Comput 8(3):240-255.