آنالیز پایداری جریان جابجایی آزاد با تغییر خواص فیزیکی به کمک تئوری پایداری خطی

نوع مقاله: مقاله مستقل

نویسندگان

1 استادیار، دانشکده مهندسی مکانیک، دانشگاه تربیت دبیر شهید رجایی

2 استادیار، پژوهشگاه صنعت نفت ایران

3 دانشیار، پژوهشگاه صنعت نفت ایران

چکیده

در این مطالعه به بررسی اثر تغییرات خواص فیزیکی سیال از جمله لزجت سینماتیکی و ضریب پخش حرارتی بر روی ناپایداری اولیه جریان جابجایی آزاد رایلی بنارد به صورت نیمه تحلیلی پرداخته شده است. بر این اساس معادلات حاکم بر لحظه شروع جابجایی آزاد با استفاده از پارامترهای اغتشاش دما و اغتشاش سرعت و با حل پایه هدایت خالص محاسبه گردیده است. با کمک تئوری پایداری خطی و شرط پایداری در فضای موج گونه، می توان کمینه مقدار رایلی را به عنوان رایلی بحرانی در دستگاه معادلات مقدار ویژه مذکور تعریف نمود. نتایج شبیه سازی نشان می دهد تابع عدد موج بحرانی نسبت به پارامترهای موثر در تغییر خواص، یک تابع زوج بوده و رفتار کاملا متقارن نسبت به مقادیر قرینه از خود نشان می دهد. هم چنین وابستگی دامنه و فرکانس نوسان اغتشاشات دما و سرعت بر اساس پارامترهای موثر در تغییرات خواص مورد ارزیابی قرار گرفته و نتایج تحلیل گردید. می توان گفت رفتار رایلی بحرانی نسبت به تغییرات ضریب پخش حرارتی و لزجت سینماتیکی کاملا معکوس است و لذا اثر همزمان آنها در حل معادلات منجر به کاهش بازه نوسان رایلی بحرانی خواهد شد.

کلیدواژه‌ها

موضوعات


[1] Aghanjafi C (2013) Numerical solution of a uniform magnetic field effect on the free convection heat transfer from a vertical plate. Journal of Solid and Fluid Mechanics 3(2):65-75.

[2] Alavi N, Armaghani T, Izadpanah E (2016) Natural convection heat transfer of a nanofluid in a baffle L-Shaped cavity. Journal of Solid and Fluid Mechanics 6(3): 311-21.

[3] Sedaghat MH, Yaghoubi M, Maghrebi MJ (2013) On the natural convective heat transfer from a cold horizontal cylinder over an adiabatic surface. Journal of Solid and Fluid Mechanics 2(3): 19-28.

[4] Yekani Motlagh S, Sarvari P (2017) Large Eddy Simulation of Three Dimensional Mixed Convection Flow Inside the Ventilated Cavity Containing Obstacle and Extraction of Coherent Structures using Proper Orthogonal Decomposition (POD). Journal of Solid and Fluid Mechanics 7(3): 199-212.

[5] Bernard H (1900) Les tourbillons cellulaires dans une nappe liquide [The cellular vortices in a liquid layer]. Rev Gén Sci Pure Appl 11: 1261-1271.

[6] RAYLEIOH L (1916) On convection currents in a horizontal layer of fluid when the. Philos Mag 32:529.

[7] Pearson J (1958) On convection cells induced by surface tension. J Fluid Mech 4(5): 489-500.

[8] Kao P-H, Yang R-J (2007) Simulating oscillatory flows in Rayleigh–Benard convection using the lattice Boltzmann method. Int J Heat Mass Transf 50(17): 3315-3328.

[9] Kelly R, Hu HC (1993) The onset of Rayleigh–Bénard convection in non-planar oscillatory flows. J Fluid Mech 249: 373-390.

[10] Yang K, Mukutmoni D (1993) Rayleigh-benard convection in a small aspect ratio enclosure: Part 1—bifurcation to oscillatory convection. J Heat Transf 115:360-366.

[11] Valori V, Elsinga G, Rohde M, Tummers M, Westerweel J, van der Hagen T (2017) Experimental velocity study of non-Boussinesq Rayleigh-Bénard convection. Phys Rev E 95(5):053113.

[12] Kebiche Z, Castelain C, Burghelea T (2014) Experimental investigation of the Rayleigh–Bénard convection in a yield stress fluid. J Non-Newton Fluid Mech 203: 9-23.

[13] Aurnou J, Olson P (2001) Experiments on Rayleigh–Bénard convection, magnetoconvection and rotating magnetoconvection in liquid gallium. J Fluid Mech 430: 283-307.

[14] Wei Y, Wang Z, Yang J, Dou H-S, Qian Y (2015) A simple lattice Boltzmann model for turbulence Rayleigh–Bénard thermal convection. Comput Fluids 118: 167-171.

[15] Dabbagh F, Trias F, Gorobets A, Oliva A (2016) New subgrid-scale models for large-eddy simulation of Rayleigh-Bénard convection. J Phys: Conference Series IOP Publishing.

[16] Curry JH, Herring JR, Loncaric J, Orszag SA (1984) Order and disorder in two-and three-dimensional Benard convection. J Fluid Mech 147: 1-38.

[17] Hernandez R, Frederick R (1994) Spatial and thermal features of three dimensional Rayleigh-Bénard convection. Int J Heat Mass Transf 37(3): 411-24.

[18] Li Y-R, Zhang H, Zhang L, Wu C-M (2016) Three-dimensional numerical simulation of double-diffusive Rayleigh–Bénard convection in a cylindrical enclosure of aspect ratio 2. Int J Heat Mass Transf 98: 472-483.

[19] Chimanski EV, Rempel EL, Chertovskih R (2016) On–off intermittency and spatiotemporal chaos in three-dimensional Rayleigh–Bénard convection. Adv Space Res 57(6): 1440-1447.

[20] Zhang L, Li Y-R, Zhang H (2017) Onset of double-diffusive Rayleigh-Bénard convection of a moderate Prandtl number binary mixture in cylindrical enclosures. Int J Heat Mass Transf 107: 500-509.

[21] Sakievich P, Peet Y, Adrian R (2016) Statistical convergence and the effect of large-scale motions on turbulent Rayleigh-Bénard convection in a cylindrical domain with 6.3 aspect ratio. APS Meeting Abstracts.

[22] Cattaneo F, Hughes DW (2017) Dynamo action in rapidly rotating Rayleigh–Bénard convection at infinite Prandtl number. J Fluid Mech 825: 385-411.

[23] Weiss S, Wei P, Ahlers G (2016) Heat-transport enhancement in rotating turbulent Rayleigh-Bénard convection. Phys Rev E 93(4): 043102.

[24] Gotoda H, Takeuchi R, Okuno Y, Miyano T (2013) Low-dimensional dynamical system for Rayleigh-Benard convection subjected to magnetic field. J Appl Phys 113(12): 124902.

[25] Tasaka Y, Igaki K, Yanagisawa T, Vogt T, Zuerner T, Eckert S (2016) Regular flow reversals in Rayleigh-Benard convection in a horizontal magnetic field. Phys Rev 93(4): 043109.

[26] Ahlers G, Bodenschatz E, He X (2017) Ultimate-state transition of turbulent Rayleigh-Bénard convection. Phys Rev Fluids 2(5): 054603.

[27] Zhang Y, Zhou Q, Sun C (2017) Statistics of kinetic and thermal energy dissipation rates in two-dimensional turbulent Rayleigh–Bénard convection. J Fluid Mech 814: 165-184.

[28] Sakievich P, Peet Y, Adrian R (2016) Large-scale thermal motions of turbulent Rayleigh–Bénard convection in a wide aspect-ratio cylindrical domain. Int J Heat Fluid Flow 61: 183-196.

[29] Manneville P (2006) Rayleigh-Bénard convection: thirty years of experimental, theoretical, and modeling work. Dynamics of Spatio-Temporal Cellular Structures: Springer 41-65.

[30] Gelfgat AY (1999) Different modes of Rayleigh–Bénard instability in two-and three-dimensional rectangular enclosures. J Comput Phys 156(2): 300-324.

[31] Kaur P, Singh J (2017) Heat transfer in thermally modulated two-dimensional Rayleigh Bénard convection. Int J Therm Sci 114: 35-43.

[32] Siddheshwar P, Meenakshi N (2017) Amplitude equation and heat transport for Rayleigh–Bénard convection in Newtonian liquids with nanoparticles. Int J Appl Comput Math 3(1): 271-292.

[33] Ma X-R, Zhang L, Li Y-R (2017) Linear stability analysis of Rayleigh-Bénard convection of cold water near its density maximum in a vertically heated annular container. J Mech Sci Tech 31(4):1665-1672.

[34] Yu J, Goldfaden A, Flagstad M, Scheel JD (2017) Onset of Rayleigh-Bénard convection for intermediate aspect ratio cylindrical containers. Phys Fluids 29(2): 024107.

[35] Chandrasekhar S (1970) Hydrodynamic and hydromagnetic stability.

[36] Dominguez‐Lerma M, Ahlers G, Cannell DS (1984) Marginal stability curve and linear growth rate for rotating Couette–Taylor flow and Rayleigh–Bénard convection. Phys Fluids 27(4): 856-860.

[37] Wazzan A, Keltner G, Okamura T, Smith A (1972) Spatial stability of stagnation water boundary layer with heat transfer. Phys Fluids 15(12): 2114-2118.

[38] Busse F (1967) The stability of finite amplitude cellular convection and its relation to an extremum principle. J Fluid Mech 30(4):625-649.

[39] Palm E, Ellingsen T, Gjevik B (1967) On the occurrence of cellular motion in Bénard convection. J Fluid Mech 30(4):651-661.

[40] Hoard C, Robertson C, Acrivos A (1970) Experiments on the cellular structure in Bénard convection. Int J Heat Mass Transf 13(5): 849IN7853-852856.

[41] Somerscales E, Dougherty T (1970) Observed flow patterns at the initiation of convection in a horizontal liquid layer heated from below. J Fluid Mech 42(4):755-768.

[42] Busse F (1978) Non-linear properties of thermal convection. Rep Progr Phys 41(12): 1929.

[43] Busse F, Frick H (1985) Square-pattern convection in fluids with strongly temperature-dependent viscosity. J Fluid Mech 150:451-465.

[44] Palm E (1960) On the tendency towards hexagonal cells in steady convection. J Fluid Mech 8(2):183-192.

[45] Segel LA, Stuart J (1962) On the question of the preferred mode in cellular thermal convection. J Fluid Mech 13(2):289-306.

[46] Richter FM (1978) Experiments on the stability of convection rolls in fluids whose viscosity depends on temperature. J Fluid Mech 89(3): 553-560.

[47] Stengel KC, Oliver DS, Booker JR (1982) Onset of convection in a variable-viscosity fluid. J Fluid Mech 120:411-431.

[48] Capone F, Gentile M (1994) Nonlinear stability analysis of convection for fluids with exponentially temperature-dependent viscosity. Acta Mech 107(1-4): 53-64.

[49] Capone F, Gentile M (1995) Nonlinear stability analysis of the Bénard problem for fluids with a convex nonincreasing temperature depending viscosity. Contin Mech Thermodyn 7(3): 297-309.

[50] Richardson L, Straughan B (1993) A nonlinear energy stability analysis of convection with temperature dependent viscosity. Acta Mech 97(1-2): 41-49.

[51] Severin J, Herwig H (1999) Onset of convection in the Rayleigh-Bénard flow with temperature dependent viscosity: An asymptotic approach. Zeitschrift für Angewandte Mathematik und Physik (ZAMP) 50(3): 375-386.

[52] Rajagopal K, Saccomandi G, Vergori L (2009) Stability analysis of the Rayleigh–Bénard convection for a fluid with temperature and pressure dependent viscosity. Zeitschrift für Angewandte Mathematik und Physik (ZAMP) 60(4): 739-755.

[53] Papanicolaou N, Christov C, Homsy G (2009) Galerkin technique based on beam functions in application to the parametric instability of thermal convection in a vertical slot. Int J Numer Methods Fluids 59(9): 945-967.

[54] Laun HM (2003) Pressure dependent viscosity and dissipative heating in capillary rheometry of polymer melts. Rheol Acta 42(4): 295-308.

[55] Bair S, Kottke P (2003) Pressure-viscosity relationships for elastohydrodynamics. Tribol Trans 46(3): 289-295.

[56] Martın-Alfonso M, Martınez-Boza F, Partal P, Gallegos C (2006) Influence of pressure and temperature on the flow behaviour of heavy fluid oils. Rheol Acta 45: 357-365.