Modeling piezoelectric based energy harvesters under random base excitation

Authors

Ferdowsi University of Mashhad

Abstract

Many of energy harvesting devices use piezoelectric elements to convert mechanical vibrations into usable electrical energy. The input excitation is usually assumed to be a deterministic harmonic wave, while in practical situations, the mechanical excitation of the media is a random signal. So, the objective of this research is to study the energy harvesting in piezoelectric devices using the random vibration theory. At the first step a lumped parameter physical model of the device is presented. A mathematical model is then developed by obtaining the normalized differential equations governing the voltage induced in the energy harvesting circuit as well as the length of the piezoelectric material. The random vibration theory is then utilized to derive analytical expressions for the statistical properties of the voltage, power and the length of the piezoelectric material in terms of the statistical properties of the excitation which is assumed to be a band limited white noise. It is shown that with proper selection of the system parameters, the expected value of the harvested power can be effectively maximized. The qualitative and quantitative knowledge resulting from this effort is expected to enable the analysis, optimization, and synthesis of piezoelectric energy harvesting devices.

Keywords

Main Subjects


[1] Ando B, Baglio S, Maiorca F, Trigona C (2013) Analysis of two dimensional, wide band, bistable vibration energy harvester. Sensor Actuator 22: 176-182.
[2] علی قربان‌پور آرانی، محمد عبدالهیان، رضا کلاه‌چی (1393) کمانش الکتروترمومکانیکی نانوتیر پیزوالکتریک با استفاده از تئوری‌های الاستیسیته گرادیان کرنشی و تیر ردی. مجله‌ی علمی پژوهشی مکانیک سازه‌ها و شاره‌ها، شماره‌ی 3، صفحات 23-33.
[3] محمد رضایی پژند، الیاس اعرابی (1390) تحلیل غیرخطی هندسی پوسته‌ی متقارن محوری چند لایه با لایه‌ی پیزوالکتریک گسترده. مجله‌ی علمی پژوهشی مکانیک سازه‌ها و شاره‌ها، شماره‌ی 1، صفحات 1-11.
[4] Abdelkefi A, Nayfeh AH, Hajj MR (2012) Effects of nonlinear piezoelectric coupling on energy harvesters under direct excitation. Nonlinear Dynam 67: 1221-1232.
[5] Ciofani G, Menciassi A (2012) Piezoelectric nanomaterials for biomedical applications. Springe.
[6] Ebrahimi F (2013) Piezoelectric materials and devices: applications in engineering and medical sciences. CRC Press.
[7] Zhu D (2011) Vibration energy harvesting: machinery vibration, human movement and flow induced vibration. InTech.
[8] Sodano HA, Inman DJ (2004) A review of power harvesting from vibration using piezoelectric materials. Smart Mater Struct 36: 197-205.
[9] Abdelkefi A, Nayfeh AH, Hajj MR (2012) Design of piezoaeroelastic energy harvesters. Nonlinear Dynam 68: 519-530.
[10] Abdelkefi A, Nayfeh AH, Hajj MR (2012) Modeling and analysis of piezoaeroelastic energy harvesters. Nonlinear Dynam 67: 925-939.
[11] A Abdelkefi, AH Nayfeh, MR Hajj (2012) Enhancement of power harvesting from piezoaeroelastic systems. Nonlinear Dynam 68: 531-541.
[12] Li W, Liu TS, Hsiao CC (2011) A miniature generator using piezoelectric bender with elastic base. Mechatronics 21: 1183-1189.
[13] Junior CDM, Erturk A, Inman DJ (2009) An electromechanical finite element model for piezoelectric energy harvester plates. J Sound Vib 327: 9-25.
[14] Xu TB, Siochi EJ, Kang JH, Zuo L, Zhou W, Tang X (2013) Energy harvesting using a PZT ceramic multilayer stack. Smart Mater Struct 22: 1-15.
[15] Priya S, Inman DJ (2009) Energy harvesting technologies. Springer.
[16] Abdelkefi A,  Najar F, Nayfeh AH, Ayed SB (2011) An energy harvester using piezoelectric cantilever beams undergoing coupled bending–torsion vibrations. Smart Mater Struct 20: 1-11.
[17] Borowiec M, Litak G, Friswell MI, Ali S, Adhikari S, Lees AW (2013) Energy harvesting in piezoelastic systems driven by random excitations. Int J Struct Stab Dy 13: 1-11.
[18] Cottone  F,  Gammaitoni  L, Vocca  H, Ferrari  M, Ferrari V (2012) Piezoelectric buckled beams for random vibration energy harvesting. Smart Mater Struct 21: 1-11.
[19] Li P, Gao S, Cai H (2015) Modeling and analysis of hybrid piezoelectric and electromagnetic energy harvesting from random vibrations. Microsyst Technol 21: 401-414.
[20] Cryns JW, Hatchell BK, Santiago-Rojas E, Silvers KL (2013) Experimental analysis of a piezoelectric energy harvesting system for harmonic, random, and sine on random vibration. Adv Acoust Vib 1-12.
[21] Roundy S, Wright PK, Rabaey J (2003) A study of low level vibrations as a power source for wireless sensor nodes. Comput Commun 26: 1131-1144.
[22] DuToit NE, Wardle BL, Kim SG (2005) Design considerations for MEMS-Scale piezoelectric mechanical vibration energy harvesters. Integr Ferroelectr 71: 121-160.
[23] Rao SS (2007) Vibration of continuous systems. John Wiley & Sons, Hoboken.
[24] Newland DE (1984) An introduction to random vibrations and spectral analysis. Longman.
[25] Halvorsen E (2007) Broadband excitation of resonant energy harvesters. Power MEMS 319-322.