[1] C. Farhat, K. G. Van der Zee, and P. Geuzaine, "Provably second-order time-accurate loosely-coupled solution algorithms for transient nonlinear computational aeroelasticity," Computer methods in applied mechanics and engineering, vol. 195, no. 17-18, pp. 1973-2001, 2006.
[2] J. Hoffman, J. Jansson, and N. Jansson, "FEniCS-HPC: Automated predictive high-performance finite element computing with applications in aerodynamics," in Parallel Processing and Applied Mathematics: 11th International Conference, PPAM 2015, Krakow, Poland, September 6-9, 2015. Revised Selected Papers, Part I 11, 2016: Springer, pp. 356-365.
[3] G. Link, M. Kaltenbacher, M. Breuer, and M. Döllinger, "A 2D finite-element scheme for fluid–solid–acoustic interactions and its application to human phonation," Computer Methods in Applied Mechanics and Engineering, vol. 198, no. 41-44, pp. 3321-3334, 2009.
[4] Y. Bazilevs, M. C. Hsu, J. Kiendl, R. Wüchner, and K. U. Bletzinger, "3D simulation of wind turbine rotors at full scale. Part II: Fluid–structure interaction modeling with composite blades," Int. J. num. methods in fluids, vol. 65, no. 1‐3, pp. 236-253, 2011.
[5] R. Castilla, P. Gamez-Montero, N. Ertürk, A. Vernet, M. Coussirat, and E. Codina, "Numerical simulation of turbulent flow in the suction chamber of a gearpump using deforming mesh and mesh replacement," Int. J. Mech. Sci., vol. 52, no. 10, pp. 1334-1342, 2010.
[6] R. K. Jaiman, F. Shakib, O. H. Oakley Jr, and Y. Constantinides, "Fully coupled fluid-structure interaction for offshore applications," in International Conference on Offshore Mechanics and Arctic Engineering, 2009, vol. 43451, pp. 757-765.
[7] M. R. Ross, M. A. Sprague, C. A. Felippa, and K. Park, "Treatment of acoustic fluid–structure interaction by localized Lagrange multipliers and comparison to alternative interface-coupling methods," Computer Methods in Applied Mechanics and Engineering, vol. 198, no. 9-12, pp. 986-1005, 2009.
[8] ا. کیانی و م. محمدی امین، "مطالعه عددی نوسانات پایدارکننده انعطافپذیر متصل به جسم در حال ارتعاشات اجباری با استفاده از شبیهسازی اندرکنش سیال– سازه"، مکانیک سازه ها و شاره ها، دوره 9، شماره 2، صفحات 47-59، 2019.
[9] S. Turek and J. Hron, Proposal for numerical benchmarking of fluid-structure interaction between an elastic object and laminar incompressible flow. Springer, 2006.
[10] L. Shang, C. Hoareau, and A. Zilian, "Modeling and simulation of thin-walled piezoelectric energy harvesters immersed in flow using monolithic fluid–structure interaction," Finite Elements in Analysis and Design, vol. 206, p. 103761, 2022.
[11] J. Hron, A. Ouazzi, and S. Turek, "A computational comparison of two FEM solvers for nonlinear incompressible flow," in Challenges in Scientific Computing-CISC 2002: Proceedings of the Conference Challenges in Scientific Computing Berlin, October 2–5, 2002, 2003: Springer, pp. 87-109.
[12] S. Bna, "Multilevel domain decomposition algorithms for monolithic fluid-structure interaction problems with application to haemodynamics," 2014.
[13] J. Degroote, K.-J. Bathe, and J. Vierendeels, "Performance of a new partitioned procedure versus a monolithic procedure in fluid–structure interaction," Computers & Structures, vol. 87, no. 11-12, pp. 793-801, 2009.
[14] P. Causin, J.-F. Gerbeau, and F. Nobile, "Added-mass effect in the design of partitioned algorithms for fluid–structure problems," Computer methods in applied mechanics and engineering, vol. 194, no. 42-44, pp. 4506-4527, 2005.
[15] E. H. van Brummelen, "Added mass effects of compressible and incompressible flows in fluid-structure interaction," 2009.
[16] S. R. Idelsohn, F. Del Pin, R. Rossi, and E. Oñate, "Fluid–structure interaction problems with strong added‐mass effect," Int. J. for numerical methods in engineering, vol. 80, no. 10, pp. 1261-1294, 2009.
[17] A. E. Bogaers, S. Kok, B. D. Reddy, and T. Franz, "An evaluation of quasi-Newton methods for application to FSI problems involving free surface flow and solid body contact," Computers & Structures, vol. 173, pp. 71-83, 2016.
[18] U. Küttler, M. Gee, C. Förster, A. Comerford, and W. Wall, "Coupling strategies for biomedical fluid–structure interaction problems," Int. J. Num. Methods in Biomedical Engineering, vol. 26, no. 3‐4, pp. 305-321, 2010.
[19] H.-J. Bungartz, M. Mehl, and M. Schäfer, Fluid Structure Interaction II: Modelling, Simulation, Optimization. Springer Science & Business Media, 2010.
[20] U. Langer and H. Yang, "Numerical simulation of fluid-structure interaction problems with hyperelastic models I: A partitioned approach," arXiv preprint arXiv:1312.5561, 2013.
[21] G. A. Holzapfel, "Nonlinear solid mechanics: a continuum approach for engineering science," ed: Kluwer Academic Publishers Dordrecht, 2002.
[22] Z. Więckowski, "The material point method in large strain engineering problems," Computer methods in applied mechanics and engineering, vol. 193, no. 39-41, pp. 4417-4438, 2004.
[23] T. Wick, "Adaptive finite element simulation of fluid-structure interaction with application to heart-valve dynamics," 2011.
[24] س. اصیل قرهباغی و م. شیرزاد، "مطالعه عددی رفتار دینامیکی استوانههای در معرض جریان با تکیهگاه غیرخطی"، نشریه علمی-پژوهشی مهندسی دریا، دوره 19، شماره 40، صفحات 42-30، 2023.
[25] س. اصیل قرهباغی و م. شیرزاد، "ارزیابی پارامترهای هیدرودینامیکی در ارتعاش ناشی از گردابه سازههای استوانه ای با تکیهگاه غیرخطی"، مهندسی مکانیک مدرس، دوره 24، شماره 9، صفحات 557-566، 2024.
[26] S. Asil Gharebaghi and M. Shirzad, "Chaotic Vortex-Induced Vibrations of Rigid Cylinders with Nonlinear Snapping Support," Int.J. Bifurcation and Chaos, vol. 34, no. 08, p. 2450096, 2024, doi: 10.1142/s0218127424500962.
[27] T. J. Hughes, W. K. Liu, and T. K. Zimmermann, "Lagrangian-Eulerian finite element formulation for incompressible viscous flows," Computer methods in applied mechanics and engineering, vol. 29, no. 3, pp. 329-349, 1981.
[28] J. Donea, S. Giuliani, and J.-P. Halleux, "An arbitrary Lagrangian-Eulerian finite element method for transient dynamic fluid-structure interactions," Computer methods in applied mechanics and engineering, vol. 33, no. 1-3, pp. 689-723, 1982.
[29] N. Jenkins and K. Maute, "An immersed boundary approach for shape and topology optimization of stationary fluid-structure interaction problems," Structural and Multidisciplinary Optimization, vol. 54, pp. 1191-1208, 2016.
[30] S. Tschisgale and J. Fröhlich, "An immersed boundary method for the fluid-structure interaction of slender flexible structures in viscous fluid," J. Comput. Phys., vol. 423, p. 109801, 2020.
[31] J. Hron and S. Turek, "A monolithic FEM/multigrid solver for an ALE formulation of fluid-structure interaction with applications in biomechanics," in Fluid-Structure Interaction: Modelling, Simulation, Optimisation: Springer, 2006, pp. 146-170.
[32] J. Baiges and R. Codina, "The fixed‐mesh ALE approach applied to solid mechanics and fluid–structure interaction problems," Int. J. for numerical methods in engineering, vol. 81, no. 12, pp. 1529-1557, 2010.
[33] M. Razzaq, R. Owais, M. Anwar, and F. Abbas, "Finite Element Method for Strongly Coupled Fluid-Structure Interaction of a Vertical Flap in a Channel and Aneurysm Hemodynamics," 2023.
[34] R. Nemer, A. Larcher, and E. Hachem, "Adaptive Immersed Mesh Method (AIMM) for Fluid–Structure Interaction," Computers & Fluids, vol. 277, p. 106285, 2024.
[35] S. Basting, A. Quaini, S. Čanić, and R. Glowinski, "Extended ALE method for fluid–structure interaction problems with large structural displacements," J. Computational Physics, vol. 331, pp. 312-336, 2017.
[36] F. M. White and J. Majdalani, Viscous fluid flow. McGraw-Hill New York, 2006.
[37] R. Lan, M. J. Ramirez, and P. Sun, "Finite element analysis of an arbitrary Lagrangian–Eulerian method for Stokes/parabolic moving interface problem with jump coefficients," Results in Applied Mathematics, vol. 8, p. 100091, 2020.
[38] J. Donea and A. Huerta, Finite element methods for flow problems. John Wiley & Sons, 2003.
[39] A. M. Winslow, "Adaptive-mesh zoning by the equipotential method," Lawrence Livermore National Lab.(LLNL), Livermore, CA (United States), 1981.
[40] D. Han, G. Liu, and S. Abdallah, "An Eulerian-Lagrangian-Lagrangian method for 2D fluid-structure interaction problem with a thin flexible structure immersed in fluids," Computers & Structures, vol. 228, p. 106179, 2020.
[41] C. Taylor and P. Hood, "A numerical solution of the Navier-Stokes equations using the finite element technique," Computers & Fluids, vol. 1, no. 1, pp. 73-100, 1973.
[42] Z. Ge, M. Feng, and Y. He, "Stabilized multiscale finite element method for the stationary Navier–Stokes equations," J. mathematical analysis and applications, vol. 354, no. 2, pp. 708-717, 2009.
[43] P. Sun, C.-S. Zhang, R. Lan, and L. Li, "An advanced ALE-mixed finite element method for a cardiovascular fluid–structure interaction problem with multiple moving interfaces," J. Computational Science, vol. 50, p. 101300, 2021.
[44] M. Alnæs et al., "The FEniCS project version 1.5," Archive of numerical software, vol. 3, no. 100, 20.
[45] A. Logg, K.-A. Mardal, and G. Wells, Automated solution of differential equations by the finite element method: The FEniCS book. Springer Science & Business Media, 2012.
[46] T. Wick, "Flapping and contact FSI computations with the fluid–solid interface-tracking/interface-capturing technique and mesh adaptivity," Computational Mechanics, vol. 53, pp. 29-43, 2014.
[47] S. T. Ha, L. C. Ngo, M. Saeed, B. J. Jeon, and H. Choi, "A comparative study between partitioned and monolithic methods for the problems with 3D fluid-structure interaction of blood vessels," J.Mech. Sci. Tech., vol. 31, pp. 281-287, 2017.
[48] M. Bucelli, L. Dede, A. Quarteroni, and C. Vergara, "Partitioned and monolithic algorithms for the numerical solution of cardiac fluid-structure interaction," Communications in Computational Physics, vol. 32, no. 5, pp. 1217-1256, 2023.
[49] D. Appelö, L. Zhang, T. Hagstrom, and F. Li, "An energy-based discontinuous Galerkin method with tame CFL numbers for the wave equation," BIT Numerical Mathematics, vol. 63, no. 1, p. 5, 2023.