Fluid-structure interaction problem in the framework of Arbitrary Lagrangian-Eulerian (ALE) description using a monolithic approach in 2D

Authors

1 M.S.c. Student, College of Engineering, School of Civil Engineering, University of Tehran, Tehran, Iran

2 Professor, College of Engineering, School of Civil Engineering, University of Tehran, Tehran, Iran

10.22044/jsfm.2025.14062.3829

Abstract

The partitioned approach for solving fluid-structure interaction problems is prone to numerical instabilities, often leading to a lack of convergence. Overcoming these challenges requires stabilization techniques and reduced time steps, significantly increasing computational costs. In this study, a monolithic formulation within the Arbitrary Lagrangian-Eulerian (ALE) framework is proposed for analyzing fluid-structure interaction problems, enabling efficient tracking of moving boundaries. The Navier-Stokes equations for unsteady fluid flow and the linear elasticity equations for the structure are solved in a strongly coupled manner. Comparison with the partitioned approach revealed that the average computational time per step in the partitioned method was 51 seconds, while the proposed approach required only 7 seconds, demonstrating its computational efficiency. Furthermore, the proposed method eliminates the added mass effect, enhances solution accuracy, and prevents sudden oscillations observed in the partitioned approach.

Additionally, mesh dependency analysis showed that increasing the degrees of freedom from 85,452 to 1,141,027 resulted in only a 2% increase in pressure and displacement, indicating minimal sensitivity to mesh size. This highlights the robustness and efficiency of the proposed method in solving fluid-structure interaction problems.

Keywords

Main Subjects


[1]     C. Farhat, K. G. Van der Zee, and P. Geuzaine, "Provably second-order time-accurate loosely-coupled solution algorithms for transient nonlinear computational aeroelasticity," Computer methods in applied mechanics and engineering, vol. 195, no. 17-18, pp. 1973-2001, 2006.
[2]     J. Hoffman, J. Jansson, and N. Jansson, "FEniCS-HPC: Automated predictive high-performance finite element computing with applications in aerodynamics," in Parallel Processing and Applied Mathematics: 11th International Conference, PPAM 2015, Krakow, Poland, September 6-9, 2015. Revised Selected Papers, Part I 11, 2016: Springer, pp. 356-365.
[3]     G. Link, M. Kaltenbacher, M. Breuer, and M. Döllinger, "A 2D finite-element scheme for fluid–solid–acoustic interactions and its application to human phonation," Computer Methods in Applied Mechanics and Engineering, vol. 198, no. 41-44, pp. 3321-3334, 2009.
[4]     Y. Bazilevs, M. C. Hsu, J. Kiendl, R. Wüchner, and K. U. Bletzinger, "3D simulation of wind turbine rotors at full scale. Part II: Fluid–structure interaction modeling with composite blades," Int. J. num. methods in fluids, vol. 65, no. 1‐3, pp. 236-253, 2011.
[5]     R. Castilla, P. Gamez-Montero, N. Ertürk, A. Vernet, M. Coussirat, and E. Codina, "Numerical simulation of turbulent flow in the suction chamber of a gearpump using deforming mesh and mesh replacement," Int. J. Mech. Sci., vol. 52, no. 10, pp. 1334-1342, 2010.
[6]     R. K. Jaiman, F. Shakib, O. H. Oakley Jr, and Y. Constantinides, "Fully coupled fluid-structure interaction for offshore applications," in International Conference on Offshore Mechanics and Arctic Engineering, 2009, vol. 43451, pp. 757-765.
[7]     M. R. Ross, M. A. Sprague, C. A. Felippa, and K. Park, "Treatment of acoustic fluid–structure interaction by localized Lagrange multipliers and comparison to alternative interface-coupling methods," Computer Methods in Applied Mechanics and Engineering, vol. 198, no. 9-12, pp. 986-1005, 2009.
[8]     ا. کیانی و م. محمدی امین، "مطالعه عددی نوسانات پایدارکننده انعطاف‌پذیر متصل به جسم در حال ارتعاشات اجباری با استفاده از شبیه‌سازی اندرکنش سیال– سازه"، مکانیک سازه ها و شاره ها، دوره 9، شماره 2، صفحات 47-59، 2019.
[9]     S. Turek and J. Hron, Proposal for numerical benchmarking of fluid-structure interaction between an elastic object and laminar incompressible flow. Springer, 2006.
[10]   L. Shang, C. Hoareau, and A. Zilian, "Modeling and simulation of thin-walled piezoelectric energy harvesters immersed in flow using monolithic fluid–structure interaction," Finite Elements in Analysis and Design, vol. 206, p. 103761, 2022.
[11]   J. Hron, A. Ouazzi, and S. Turek, "A computational comparison of two FEM solvers for nonlinear incompressible flow," in Challenges in Scientific Computing-CISC 2002: Proceedings of the Conference Challenges in Scientific Computing Berlin, October 2–5, 2002, 2003: Springer, pp. 87-109.
[12]   S. Bna, "Multilevel domain decomposition algorithms for monolithic fluid-structure interaction problems with application to haemodynamics," 2014.
[13]   J. Degroote, K.-J. Bathe, and J. Vierendeels, "Performance of a new partitioned procedure versus a monolithic procedure in fluid–structure interaction," Computers & Structures, vol. 87, no. 11-12, pp. 793-801, 2009.
[14]   P. Causin, J.-F. Gerbeau, and F. Nobile, "Added-mass effect in the design of partitioned algorithms for fluid–structure problems," Computer methods in applied mechanics and engineering, vol. 194, no. 42-44, pp. 4506-4527, 2005.
[15]   E. H. van Brummelen, "Added mass effects of compressible and incompressible flows in fluid-structure interaction," 2009.
[16]   S. R. Idelsohn, F. Del Pin, R. Rossi, and E. Oñate, "Fluid–structure interaction problems with strong added‐mass effect," Int. J. for numerical methods in engineering, vol. 80, no. 10, pp. 1261-1294, 2009.
[17]   A. E. Bogaers, S. Kok, B. D. Reddy, and T. Franz, "An evaluation of quasi-Newton methods for application to FSI problems involving free surface flow and solid body contact," Computers & Structures, vol. 173, pp. 71-83, 2016.
[18]   U. Küttler, M. Gee, C. Förster, A. Comerford, and W. Wall, "Coupling strategies for biomedical fluid–structure interaction problems," Int. J. Num. Methods in Biomedical Engineering, vol. 26, no. 3‐4, pp. 305-321, 2010.
[19]   H.-J. Bungartz, M. Mehl, and M. Schäfer, Fluid Structure Interaction II: Modelling, Simulation, Optimization. Springer Science & Business Media, 2010.
[20]   U. Langer and H. Yang, "Numerical simulation of fluid-structure interaction problems with hyperelastic models I: A partitioned approach," arXiv preprint arXiv:1312.5561, 2013.
[21]   G. A. Holzapfel, "Nonlinear solid mechanics: a continuum approach for engineering science," ed: Kluwer Academic Publishers Dordrecht, 2002.
[22]   Z. Więckowski, "The material point method in large strain engineering problems," Computer methods in applied mechanics and engineering, vol. 193, no. 39-41, pp. 4417-4438, 2004.
[23]   T. Wick, "Adaptive finite element simulation of fluid-structure interaction with application to heart-valve dynamics," 2011.
[24]   س. اصیل قره­باغی و م. شیرزاد، "مطالعه عددی رفتار دینامیکی استوانه­های در معرض جریان با تکیه­گاه غیرخطی"، نشریه علمی-پژوهشی مهندسی دریا، دوره 19، شماره 40، صفحات 42-30، 2023.
[25]   س. اصیل قره­باغی و م. شیرزاد، "ارزیابی پارامترهای هیدرودینامیکی در ارتعاش ناشی از گردابه سازه­های استوانه ای با تکیه­گاه غیرخطی"، مهندسی مکانیک مدرس، دوره 24، شماره 9، صفحات 557-566، 2024.
[26]   S. Asil Gharebaghi and M. Shirzad, "Chaotic Vortex-Induced Vibrations of Rigid Cylinders with Nonlinear Snapping Support," Int.J. Bifurcation and Chaos, vol. 34, no. 08, p. 2450096, 2024, doi: 10.1142/s0218127424500962.
[27]   T. J. Hughes, W. K. Liu, and T. K. Zimmermann, "Lagrangian-Eulerian finite element formulation for incompressible viscous flows," Computer methods in applied mechanics and engineering, vol. 29, no. 3, pp. 329-349, 1981.
[28]   J. Donea, S. Giuliani, and J.-P. Halleux, "An arbitrary Lagrangian-Eulerian finite element method for transient dynamic fluid-structure interactions," Computer methods in applied mechanics and engineering, vol. 33, no. 1-3, pp. 689-723, 1982.
[29]   N. Jenkins and K. Maute, "An immersed boundary approach for shape and topology optimization of stationary fluid-structure interaction problems," Structural and Multidisciplinary Optimization, vol. 54, pp. 1191-1208, 2016.
[30]   S. Tschisgale and J. Fröhlich, "An immersed boundary method for the fluid-structure interaction of slender flexible structures in viscous fluid," J. Comput. Phys., vol. 423, p. 109801, 2020.
[31]   J. Hron and S. Turek, "A monolithic FEM/multigrid solver for an ALE formulation of fluid-structure interaction with applications in biomechanics," in Fluid-Structure Interaction: Modelling, Simulation, Optimisation: Springer, 2006, pp. 146-170.
[32]   J. Baiges and R. Codina, "The fixed‐mesh ALE approach applied to solid mechanics and fluid–structure interaction problems," Int. J. for numerical methods in engineering, vol. 81, no. 12, pp. 1529-1557, 2010.
[33]   M. Razzaq, R. Owais, M. Anwar, and F. Abbas, "Finite Element Method for Strongly Coupled Fluid-Structure Interaction of a Vertical Flap in a Channel and Aneurysm Hemodynamics," 2023.
[34]   R. Nemer, A. Larcher, and E. Hachem, "Adaptive Immersed Mesh Method (AIMM) for Fluid–Structure Interaction," Computers & Fluids, vol. 277, p. 106285, 2024.
[35]   S. Basting, A. Quaini, S. Čanić, and R. Glowinski, "Extended ALE method for fluid–structure interaction problems with large structural displacements," J. Computational Physics, vol. 331, pp. 312-336, 2017.
[36]   F. M. White and J. Majdalani, Viscous fluid flow. McGraw-Hill New York, 2006.
[37]   R. Lan, M. J. Ramirez, and P. Sun, "Finite element analysis of an arbitrary Lagrangian–Eulerian method for Stokes/parabolic moving interface problem with jump coefficients," Results in Applied Mathematics, vol. 8, p. 100091, 2020.
[38]   J. Donea and A. Huerta, Finite element methods for flow problems. John Wiley & Sons, 2003.
[39]   A. M. Winslow, "Adaptive-mesh zoning by the equipotential method," Lawrence Livermore National Lab.(LLNL), Livermore, CA (United States), 1981.
[40]   D. Han, G. Liu, and S. Abdallah, "An Eulerian-Lagrangian-Lagrangian method for 2D fluid-structure interaction problem with a thin flexible structure immersed in fluids," Computers & Structures, vol. 228, p. 106179, 2020.
 
[41]   C. Taylor and P. Hood, "A numerical solution of the Navier-Stokes equations using the finite element technique," Computers & Fluids, vol. 1, no. 1, pp. 73-100, 1973.
[42]   Z. Ge, M. Feng, and Y. He, "Stabilized multiscale finite element method for the stationary Navier–Stokes equations," J. mathematical analysis and applications, vol. 354, no. 2, pp. 708-717, 2009.
[43]   P. Sun, C.-S. Zhang, R. Lan, and L. Li, "An advanced ALE-mixed finite element method for a cardiovascular fluid–structure interaction problem with multiple moving interfaces," J. Computational Science, vol. 50, p. 101300, 2021.
[44]   M. Alnæs et al., "The FEniCS project version 1.5," Archive of numerical software, vol. 3, no. 100, 20.
[45]   A. Logg, K.-A. Mardal, and G. Wells, Automated solution of differential equations by the finite element method: The FEniCS book. Springer Science & Business Media, 2012.
[46]   T. Wick, "Flapping and contact FSI computations with the fluid–solid interface-tracking/interface-capturing technique and mesh adaptivity," Computational Mechanics, vol. 53, pp. 29-43, 2014.
[47]   S. T. Ha, L. C. Ngo, M. Saeed, B. J. Jeon, and H. Choi, "A comparative study between partitioned and monolithic methods for the problems with 3D fluid-structure interaction of blood vessels," J.Mech. Sci. Tech., vol. 31, pp. 281-287, 2017.
[48]   M. Bucelli, L. Dede, A. Quarteroni, and C. Vergara, "Partitioned and monolithic algorithms for the numerical solution of cardiac fluid-structure interaction," Communications in Computational Physics, vol. 32, no. 5, pp. 1217-1256, 2023.
[49]   D. Appelö, L. Zhang, T. Hagstrom, and F. Li, "An energy-based discontinuous Galerkin method with tame CFL numbers for the wave equation," BIT Numerical Mathematics, vol. 63, no. 1, p. 5, 2023.