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Abstract  
The partitioned approach for solving fluid-structure interaction problems is prone to numerical instabilities, often leading 

to a lack of convergence. Overcoming these challenges requires stabilization techniques and reduced time steps, 

significantly increasing computational costs. In this study, a monolithic formulation within the Arbitrary Lagrangian-

Eulerian (ALE) framework is proposed for analyzing fluid-structure interaction problems, enabling efficient tracking of 

moving boundaries. The Navier-Stokes equations for unsteady fluid flow and the linear elasticity equations for the 

structure are solved in a strongly coupled manner. Comparison with the partitioned approach revealed that the average 

computational time per step in the partitioned method was 51 seconds, while the proposed approach required only 7 

seconds, demonstrating its computational efficiency. Furthermore, the proposed method eliminates the added mass effect, 

enhances solution accuracy, and prevents sudden oscillations observed in the partitioned approach. 

Additionally, mesh dependency analysis showed that increasing the degrees of freedom from 85,452 to 1,141,027 resulted 

in only a 2% increase in pressure and displacement, indicating minimal sensitivity to mesh size. This highlights the 

robustness and efficiency of the proposed method in solving fluid-structure interaction problems.  
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1.  Introduction 

Fluid-structure interaction (FSI) problems are relevant 

in various engineering fields, including aerospace, 

biomedical engineering, and mechanical engineering, 

with applications such as airflow around aircraft, blood 

flow in arteries, and wind turbine blade interactions. 

Traditional FSI solvers are categorized into two main 

approaches: the partitioned method, where fluid and 

structural domains are solved separately with data 

exchange, and the monolithic method, which 

simultaneously solves fluid and structure equations in a 

fully coupled manner. While the partitioned approach 

is computationally expensive and sensitive to added 

mass effects, the monolithic approach improves 

stability, speed, and convergence. A major 

computational challenge in FSI problems is tracking 

mesh motion and deformation, which is effectively 

addressed by the Arbitrary Lagrangian-Eulerian (ALE) 

formulation, as it combines Eulerian and Lagrangian 

descriptions to enable a moving mesh while minimizing 

numerical diffusion. Multiphysics problems, such as 
fluid-structure interaction (FSI), are significant topics 
with widespread applications in engineering sciences. 

Some notable examples include aircraft wings exposed 

to wind loads in aerospace engineering [1,2], blood 

flow modeling in biomechanical engineering [3], wind 

flow in wind turbines [4], lubricating fluid between 

bearings and gears in the automotive industry [5], and 

wave-structure interactions in coastal, port, and 

offshore engineering [6,7]. The latter encompasses 

structures such as bridge piers, dams, breakwaters, 

coastal protection structures, ship hulls, and more. 

The inherent challenges in fluid-structure interaction 

problems have led to the development of various 

numerical methods, which can be categorized into 

partitioned and monolithic approaches based on how 

the governing equations of the fluid and structure 

interact [8]. If the coupling of the fluid and structural 

equations occurs implicitly within a single system of 

equations at each time step, the solution strategy 

follows a monolithic approach, where the fluid and 

structural domains are considered as a continuous 

domain [9]. 

The monolithic approach offers greater solution 

stability compared to the partitioned approach and also 

provides higher accuracy and computational efficiency 

[10]. However, due to the lower complexity of 
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discretizing the fluid and structural domains separately, 

most engineering simulation software [11] employs the 

partitioned approach [12]. 

In the partitioned approach, the FSI problem is 

decomposed into separate subproblems for the fluid and 

structural domains. These domains are modeled with 

distinct computational grids and are analyzed 

separately using numerical methods. Subsequently, the 

boundary conditions arising from fluid-structure 

interaction are explicitly transferred between the 

solvers [13]. One of the drawbacks of this method is the 

handling of interface forces, which can lead to 

numerical instability and solution divergence. Thus, to 

ensure solution stability and convergence, a relatively 

large number of iterations is required [14]. 

In the weak coupling method, only the effect of the 

fluid on the structure is considered. Although this 

method is computationally less expensive, it is less 

accurate than the strong coupling method, making it 

less favorable. On the other hand, the strong coupling 

method, due to its bidirectional interaction, can 

introduce numerical instabilities caused by the added 

mass effect, which must be accounted for in the analysis 

[15]. 

The phenomenon of added mass effect in the strong 

coupling approach occurs when the density of the 

structure is equal to or greater than the density of the 

fluid. A real-life example of the same exists in 

biomechanical engineering, where the structural part is 

embodied by blood vessels and the fluid part is 

embodied by blood [16]. Experiments conducted by 

Degroote et al. [13] and Küttler et al. [17] have revealed 

that monolithic schemes are more effective in 

comparison to partitioned schemes. Furthermore, they 

demonstrated that the single implementation would 

remove the numerical instabilities caused by the added 

mass effect present in partitioned methods, as both the 

fluid and structure governing equations are solved 

simultaneously in one system at every time step. 

Neglect of the added mass effect in partitioned 

techniques can result in inaccurate predictions of the 

system dynamics, particularly in cases involving large 

deformations [14,18,19]. 

The Eulerian and Lagrangian perspectives [20] are the 

fundamental concepts of the numerical simulation of 

movement. In the Lagrangian (material) description, 

the mesh nodes follow the material particles. The 

drawback of this technique is the potential for 

instability in the simulation of large deformations [21]. 

In the Eulerian (spatial) description, the mesh nodes 

remain fixed. One of the major advantages of this 

approach is that it can deal with large deformations 

without mesh displacement; however, it creates 

convective terms, which are one of the sources of 

numerical instability [22]. 

Some techniques have been proposed by many 

researchers in the engineering literature to enhance 

numerical solution accuracy for partial differential 

equations (PDEs) in dynamic problems. One of the 

most popular techniques is the Arbitrary Lagrangian-

Eulerian (ALE) formulation, which was first presented 

in the early 1980s by Hughes et al. [23] and Donea et 

al. [24]. The method is based on the establishment of a 

suitable mapping (arbitrary) of the prescribed reference 

configuration onto the current dynamic field. The 

Arbitrary Lagrangian-Eulerian (ALE) formulation is an 

intermediate and generalized approach, taking into 

account the advantage of both the Eulerian and 

Lagrangian descriptions simultaneously. 

 

2. Methodology 

For a Newtonian incompressible fluid, the Navier-

Stokes equations in the Eulerian formulation, 

neglecting body forces, are expressed on the grounds of 

conservation of mass and momentum as follows: 

 

(1) 
𝜌𝑓 (

𝜕𝐯𝑓

𝜕𝑡
+ (𝐯𝑓 ⋅ ∇)𝐯𝑓)

= −∇𝑝 + 𝜇𝑓∇2𝐯𝑓    in  Ω𝑡
𝑓 

(2) ∇ ⋅ 𝐯 = 0    in  Ω𝑡
𝑓 

 

In which, 𝜌𝑓, 𝜇𝑓, 𝐯𝑓, and 𝑝 are representatives of fluid 

density, dynamic viscosity, velocity vector, and fluid 

pressure, respectively. The right-hand side of the 

equation is obtained under the assumption of a 

Newtonian fluid, while Equation (2) is considered as 

the incompressibility condition [25]. Kinematic 

viscosity is also represented by the formula 𝑣𝑓 =

𝜇𝑓/𝜌𝑓 . 

The equation of elasticity in the deforming domain, 

without body forces, is the following: 

 

(3) 𝜌𝑠

𝜕2𝑢

𝜕𝑡2
= 𝛻 ⋅ 𝜎𝑠(𝑢)   𝑖𝑛  𝛺𝑠 

 

where 𝜌𝑠 and 𝑢 are the density and displacement of the 

solid, respectively. The stress tensor 𝜎𝑠 is given by: 

 

(4) 𝜎𝑠 = 2𝜇𝑠ϵ(𝑢) + 𝜆∇. (ϵ(𝑢))𝐼 
 

These constants 𝜆  and 𝜇𝑠 are referred to as the Lamé 

parameters. Moreover, the strain tensor of the solid 

under the assumption of small deformations can be 

written as: 

 

(5) 𝜖 =
1

2
(𝛻𝑢 + (𝛻𝑢)𝑇) 

 

Given: 

 

(6) 𝑢 = 𝑢0 + ∫ 𝐯𝑑𝜏
𝑡

0

 

 

The equation for the stress tensor stress is remodeled 

as: 



Fluid-Structure Interaction problem in the framework of Arbitrary Lagrangian-Eulerian (ALE) description using… 

 

(7) 𝜎𝑠(𝒗𝑠) = 2𝜇𝑠𝜖 (∫ 𝒗𝑠𝑑𝜏
𝑡

0

) + 𝜆𝛻. (𝜖 (∫ 𝒗𝑠𝑑𝜏
𝑡

0

)) 𝐼 

 

ALE offers a hybrid Eulerian-Lagrangian method, in 

which the Eulerian method, which has a fixed mesh, is 

optimally applied to fluid dynamics, and the Lagrangian 

method, which has a mesh that moves with the material, 

is optimally applied to structural analysis. 

The mapping function relates the reference and deformed 

configurations through the relation β(X, t) = (x, t), where 

the Jacobian is J = ∂x/∂X. The convective velocity form,  

C = v − w, allows accurate tracking of moving 

boundaries, where w is the mesh velocity. To avoid 

excessive distortion, a mesh update equation, ∇²u = 0, is 

included, which allows smooth mesh motion. 

Numerical discretization of the FSI problem is 

accomplished through the application of the Finite 

Element Method (FEM) for spatial discretization, 

employing Taylor-Hood elements (P2-P1) for velocity 

and pressure. The Backward-Euler scheme is employed to 

deal with time integration. The weak form of the 

governing equations is applied to ensure accuracy and 

stability of the numerical solution. 

Weak form of governing equations for fluid domain: 

(8) 

𝜌𝑓

Δ𝑡
(𝐯𝑓

𝑛+1, 𝜑)
𝛺𝑡

𝑓 

+𝜌𝑓 (((𝐯𝑓
𝑛+1 − 𝐰𝑓). ∇) 𝐯𝑓

0, 𝜑)
𝛺𝑡

𝑓
 

−(𝑝, ∇. 𝜑)
𝛺𝑡

𝑓 + 2𝜇𝑓(𝜀(𝐯𝑓
𝑛+1), ∇𝜑)

 
𝛺𝑡

𝑓
 

=
𝜌𝑓

Δ𝑡
(𝐯𝑓

𝑛, 𝜑)
𝛺𝑡

𝑓 

 

(9) 

 
−(∇. 𝐯𝑓

𝑛+1, 𝜂)
 
𝛺𝑡

𝑓
= 0 

(10) 
 

Δ𝑡(∇𝐰𝑓 , ∇𝜓)
 Ω𝑓

= −(∇𝑢𝑛, ∇𝜓)Ω𝑓
 

 

Concerning the solid domain: 

(11) 

𝜌𝑠

Δ𝑡
(𝐯𝑠

𝑛+1, 𝜑)𝛺𝑠
 

+𝜌𝑠((𝐯𝑠
𝑛+1. ∇)𝐯𝑠

0, 𝜑)
𝛺𝑠

 

+Δ𝑡2𝜇𝑠(𝜀(𝐯𝑠
𝑛+1), 𝜀(𝜑))

𝛺𝑠
 

+Δ𝑡𝜆𝑠(∇. 𝐯𝑠
𝑛+1, ∇. 𝜑)𝛺𝑠

 

=
𝜌𝑠

Δ𝑡
(𝐯𝑠

𝑛, 𝜑)𝛺𝑠
− 2𝜇𝑠(𝜀(𝑢𝑛), 𝜀(𝜑))

𝛺𝑠
 

−𝜆𝑠(∇. 𝑢𝑛, ∇. 𝜑) 𝛺𝑠
 

 

(12) 
1

𝛿
(𝐯𝑠

𝑛+1, 𝜓)𝛺𝑠
−

1

𝛿
(𝐰𝑠, 𝜓)𝛺𝑠

= 0 
 

These are solved simultaneously in the monolithic 

framework. 

 

3. Discussion and Results 

Case one is employed as a reference example for fluid-

structure interaction (FSI) issues, in which an elastic 

body is immersed in a two-dimensional channel with 

material properties, geometry, and boundary conditions 

that are the same as those presented in reference [26]. 

In this case, validation has been conducted so as to 

enable comparison study between the coupled method 

and the discretized method. Figure 1 illustrates the 

relationship between iterations and computational time 

for case 1 at an inlet velocity of 1 m/s. The x-axis is 

utilized to represent the frequency at which the 

equations have been solved in order to achieve a 

converged solution, and the y-axis represents each 

iteration's computational time in seconds. The 

computational time taken for each step in the 

partitioned approach was on average 51 seconds, while 

that for each step in the monolithic approach was 7 

seconds. The graph shows that computer time per 

iteration for the partitioned approach is much larger 

than that for the monolithic approach. This is because, 

in each step of the partitioned approach, equations are 

solved multiple times until convergence is achieved, 

whereas in the monolithic approach, a single system of 

equations is solved at a time per iteration. 

 

 

Figure 1. Number of Iterations versus 

Computational Time. 

 

In the second case, to analyze the solution 

independence from the computational mesh, the 

displacement at the free end of the solid structure and 

the pressure on the left boundary of the structure were 

analyzed for three different mesh configurations, as 

presented in Table 1. 

 
Table 1. Types of mesh 

 Degree of 

freedom 
Number of fluid 

elements 
Number of solid 

elements 
Mesh 1 1141027 106671 26984 
Mesh 2 293312 27095 7120 
Mesh 3 85452 7174 2760 
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The results presented in Figures 2 and 3 show that these 

values are consistently similar in spite of changing 

mesh size, which implies that the results are converging 

and independent of mesh resolution. 

 

Figure 2. Displacement  

 

Figure 3. Pressure on the left boundary of the 

structure 

 
Additionally, as shown in Figure 4, the highest velocity of 

1.5036 m/s is observed at the top and bottom zones of the 

structure. 

 

Figure 4. Velocity contour 

 

4. Conclusions 

The research explored fluid-structure interaction (FSI) 

issues through an integrated approach in the Arbitrary 

Lagrangian-Eulerian (ALE) formalism, which was 

realized in the FEniCS computing environment. A 

stable coupling technique for the simultaneous solution 

of both fluid and structural equations allowed for better 

modeling of the interaction between the two domains, 

enhancing both convergence and numerical stability. 

The findings presented in the first case indicated that 

this method, while decreasing the computation time for 

each iteration, was more accurate than partitioned 

methods. On average, each iteration of the partitioned 

method required 51 seconds, whereas each iteration 

using the integrated method required only 7 seconds. 

Furthermore, both numerical and parametric studies, 

including the influence of the Reynolds number and 

mesh sensitivity analysis, validated the efficiency of the 

proposed method for different conditions. For a 

Reynolds number of 70, the coupled method was 

shown to be superior to the partitioned algorithm and 

successfully yielded convergent and stable solutions by 

cancelling out the added mass effect. 

Numerical solutions have demonstrated that the current 

code, like other comparable studies, yields accurate 

results for Reynolds numbers as high as 100. 

Furthermore, a mesh dependency study revealed that 

doubling the degrees of freedom from 85,452 to 

1,141,027 resulted in insignificant changes in pressure 

(from 3605 to 3650 Pascals) and displacement (from 

0.0232 to 0.0235 meters), and hence an insignificant 

dependency on mesh resolution. 

The comparison of the computational costs between 

this and the partitioned method confirmed its 

superiority in both lowering computational time and 

improving solution quality. This strategy has the 

capability of being an effective method for handling 

challenging fluid-structure interaction issues in 

engineering applications, while it can also be extended 

for dealing with large deformation problems in a way 

to avoid numerical instability. 
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