Investigation of the internal resonances of a beam with a local bistable nonlinear energy sink

Authors

1 Faculty of Mechanical Engineering, Shahrood University of Technology, Shahrood, Iran

2 Faculty of Mechanical Engineering, Shahrood University of Technology

3 Department of Aerospace Engineering, Sharif University of Technology, Tehran, Iran

10.22044/jsfm.2025.14638.3868

Abstract

In this article, the nonlinear vibrations of a simply supported beam with a locally attached bistable nonlinear energy sink (NES) have been studied. This study focuses on the effects of internal resonance on the dynamic behavior of beams and how vibrations can be controlled by a nonlinear energy sink (NES). Bistable nonlinear energy sinks are increasingly utilized due to their higher efficiency compared to monostable nonlinear energy sinks. A key area of interest in such problems is the forced internal resonances, where the energy transferred from the beam to the nonlinear energy sink is substantial. To address this, the system's equations of motion were derived and made dimensionless, followed by discretization using Galerkin’s method. The method of multiple scales (MMS) was then applied to investigate the 3:1 primary internal resonance. The findings indicate that the frequency response curves are highly sensitive to slight changes in nonlinear energy sink parameters, particularly damping. However, the nonlinear energy sink's softening behavior in the frequency domain, as opposed to the beam's behavior, means that physical limitations due to nonlinear energy sink mass displacement can adversely impact its efficiency. Additionally, the use of NES in beams can significantly improve dynamic stability and extend the service life of structures. The findings of this study can contribute to more optimal design and effective utilization of NES in engineering applications.

Keywords

Main Subjects


[1] Wang, J. F., Lin, C. C., & Chen, B. L. (2003). Vibration suppression for high-speed railway bridges using tuned mass dampers. Int. J. Solids struct., 40(2), 465-491.‏
[2] Moradi, H., Bakhtiari-Nejad, F., & Movahhedy, M. R. (2008). Tuneable vibration absorber design to suppress vibrations: an application in boring manufacturing process. JSV, 318(1-2), 93-108.
]3[ اسدی گرجی, کرمی محمدی, & اردشیر. (2021). استفاده از چاه انرژی غیرخطی، برای بهبود رفتار دینامیکی ورق مستطیلی تحت جریان آیرودینامیکی مافوق صوت با زوایای مختلف. نشریه مهندسی مکانیک امیرکبیر, 53(6), 3511-3528.‎
[4] Khazaee, M., Khadem, S. E., Moslemi, A., & Abdollahi, A. (2020). Vibration mitigation of a pipe conveying fluid with a passive geometrically nonlinear absorber: a tuning optimal design. Commun. Nonlinear Sci. Numer. Simul., 91, 105439.
[5] Mirhashemi, S., Saeidiha, M., & Ahmadi, H. (2023). Dynamics of a harmonically excited nonlinear pipe conveying fluid equipped with a local nonlinear energy sink. Commun. Nonlinear Sci. Numer. Simul., 118, 107035.
[6] Mamaghani, A. E., Khadem, S. E., & Bab, S. (2016). Vibration control of a pipe conveying fluid under external periodic excitation using a nonlinear energy sink. Nonlinear Dyn., 86, 1761-1795.
]7[ ابراهیمی ممقانی, & سرپرست. (2018). انتقال هدفمند انرژی از تیر دوسرگیردار تحت تحریک هارمونیک خارجی به چاه غیرخطی انرژی. مکانیک سازه ها و شاره ها, 8(4), 165-177.‎
[8] Zhou, K., Xiong, F. R., Jiang, N. B., Dai, H. L., Yan, H., Wang, L., & Ni, Q. (2019). Nonlinear vibration control of a cantilevered fluid-conveying pipe using the idea of nonlinear energy sink. Nonlinear Dyn., 95, 1435-1456.
[9] Duan, N., Wu, Y., Sun, X. M., & Zhong, C. (2021). Vibration control of conveying fluid pipe based on inerter enhanced nonlinear energy sink. IEEE TCAS-I, 68(4), 1610-1623.
[10] Zhao, X. Y., Zhang, Y. W., Ding, H., & Chen, L. Q. (2018). Vibration suppression of a nonlinear fluid-conveying pipe under harmonic foundation displacement excitation via nonlinear energy sink. Int. J. Appl. Mech., 10(09), 1850096.
[11] Wang, J., Wierschem, N. E., Wang, B., & Spencer Jr, B. F. (2020). Multi‐objective design and performance investigation of a high‐rise building with track nonlinear energy sinks. Struct. Des. Tall Build., 29(2), e1692.
[12] Wang, J., Wierschem, N. E., Spencer Jr, B. F., & Lu, X. (2015). Track nonlinear energy sink for rapid response reduction in building structures. J. Eng. Mech., 141(1), 04014104.
[13] Gendelman, O. V. (2012). Analytic treatment of a system with a vibro-impact nonlinear energy sink. JSV, 331(21), 4599-4608.
[14] Fang, S., Chen, K., Xing, J., Zhou, S., & Liao, W. H. (2021). Tuned bistable nonlinear energy sink for simultaneously improved vibration suppression and energy harvesting. Int. J. Mech. Sci., 212, 106838.
[15] Younesian, D., Nankali, A., & Motieyan, M. E. (2010, January). Application of the nonlinear energy sink systems in vibration suppression of railway bridges. ESDA (Vol. 49194, pp. 227-231).
[16] Foroutan, K., Jalali, A., & Ahmadi, H. (2019). Investigations of energy absorption using tuned bistable nonlinear energy sink with local and global potentials. JSV, 447, 155-169.
[17] Habib, G., & Romeo, F. (2017). The tuned bistable nonlinear energy sink. Nonlinear Dyn., 89(1), 179-196.
[18] Iurasov, V., & Mattei, P. O. (2020). Bistable nonlinear damper based on a buckled beam configuration. Nonlinear Dyn., 99(3), 1801-1822.
[19] Wang, T., Tang, Y., Yang, T., Ma, Z. S., & Ding, Q. (2023). Bistable enhanced passive absorber based on integration of nonlinear energy sink with acoustic black hole beam. JSV, 544, 117409.
[20] Fang, S., Chen, K., Xing, J., Zhou, S., & Liao, W. H. (2021). Tuned bistable nonlinear energy sink for simultaneously improved vibration suppression and energy harvesting. Int. J. Mech. Sci.es, 212, 106838.
[21] Ding, H., & Chen, L. Q. (2020). Designs, analysis, and applications of nonlinear energy sinks. Nonlinear Dynamics, 100(4), 3061-3107.
[22] Al-Shudeifat, M. A. (2014). Highly efficient nonlinear energy sink. Nonlinear Dyn., 76, 1905-1920.
 
[23] Saeed, A. S., Abdul Nasar, R., & AL-Shudeifat, M. A. (2023). A review on nonlinear energy sinks: designs, analysis and applications of impact and rotary types. Nonlinear Dyn., 111(1), 1-37.
[24] Geng, X. F., Ding, H., Mao, X. Y., & Chen, L. Q. (2022). A ground-limited nonlinear energy sink. Acta Mech. Sin., 38(5), 521558.
[25] Song, W., Liu, Z., Lu, C., Li, B. and Fuquan, N., 2023. Analysis of vibration suppression performance of parallel nonlinear energy sink. JVC, 29(11-12), pp.2442-2453.‏
[26] Geng, X. F., & Ding, H. (2022). Two-modal resonance control with an encapsulated nonlinear energy sink. JSV, 520, 116667.
[27] Jin, Y., Liu, K., Xiong, L., & Tang, L. (2022). A non-traditional variant nonlinear energy sink for vibration suppression and energy harvesting. MSSP, 181, 109479.
]28[ عبداللهی دمنه، ع. اسماعیل زاده خادم، س. (1398). تحلیل ارتعاشات غیرخطی سیستم تحت اثر نیروهای خارجی همراه با چاه غیرخطی انرژی از نوع ارتعاش ضربه, کنفرانس ملی توسعه فناوری در مهندسی مکانیک و هوافضا.
[29] Nayfeh, A. H., & Mook, D. T. (2008). Nonlinear oscillations. JWS.