[1] Yang B, Sun D (2013) Testing inspecting and monitoring technologies for wind turbine blades: A survey. Renew Sustain Energy Rev 22:515-526.
[2] Kong C, Taekhyun Kim DH, Sugiyama Y (2006) Investigation of faitigue life for a medium scale composite wind turbine blade. Int. J. Fatigue 28:1382-1388.
[3] Lio Y, Mahadevan S (2005) Probabilistic fatigue life prediction of unidirectional composite laminates. Compos Struct 69:11-19.
[4] Westphal T, Nijssen RPL (2014) Fatigue life prediction and strength degredation of wind turbine rotor blade composites: Validation of constant amplitude formulations with variable amplitude experiments. J Physics: Conference Series 555.
[5] Tsai SW (2012) Composite Materials: Testing and Design. Editor: ASTM STP 497.
[6] Wahl NK (2001) Spectrum fatigue lifetime and residual strength for fiberglass laminates. PhD Thesis. Montana state university.
[7] Stinchomb WW (1986) Nondestructive evalution of damage accumulation processes in composite laminates. Compos Sci Technol 17:343-351.
[8] Ronald F Gibson (2000) Modal vibration response mesurements for characterization of composite materials and structures. Compos Sci Technol 60:2769-2780.
[9] Purekar Ashish S, Lakshmanan Kodanate A, Pines Darryll J (1998) Detecting delamination damage in composite rotorcraft flexbeams using the local wave response. Proceedings of the SPIE 3329. 523-535.
[10] Valdes SHD, Soutis SC (1999) Delamination detection in composite laminates from variations of their modal charactristics. J Sound Vib 228:1-9.
[11] Rotem A (1988) Residual strength after fatigue loading. Int J Fatigue 10:27-31.
[12] Bedewi NE, Kung DN (1997) Effect of fatigue loading on the modal properties of composite structures and its utilization. Compos Struct 37:357-361.
[13] Zou L, Tong L, Steven GP (2000) Vibration-based model-dependent damage (delamination) identification and health monitoring for composite structures—a review. J Sound Vib 23:357-378.
[14] Kim H (2003) Vibration-based damage identification using reconstructed FRFs in composite structure. J Sound Vib 259:1131-1146.
[15] Kessler SS, Spearing SM, Atalla MJ, Cesnik CES, Soutis C (2002) Damage detection in composite materials using frequency response method. Compos part B 33:87-95.
[16] Moon TC, Kim HY, Hwang Wb (2003) Natural frequency reduction model for matrix dominated fatigue damage of composite laminates. Compos Struct 62:19-26.
[17] Damir AN, Elkhatib A, Nassef G (2007) Prediction of fatigue life using modal analysis for grey and ductile cast iron. Int J Fatigue 29:499-507.
[18] Abo-Elkhier M, Hamada AA, El-Deen AB (2014) Prediction of fatigue life of glass fiber reinforced polyster composites using modal testing. Int J Fatigue 69:28-35.
[19] ASTM D3479/ D3479M (2002) Standard Test Method for Tension-Tension Fatigue of Polymer Matrix Composite Materials. West Conshohocken.
[20] Roundi W, Mahi AE, Ghar AE (2017) Experimental and numerical investigation of the effects of stacking sequence and stress ratio on fatigue damage of glass/epoxy composites. Compos Part B: Engineering 109:64-71.
[21] Valizadeh P, Zabett A, Rezaeepazhand J (2024) Investigating the relationship between natural frequency and residual strength and stiffness of cross-ply laminate under cyclic loading. Polym int. online (DOI 10.1002/pi.6682).
[22] ASTM D7028 (2015) Standard Test Method for Glass Transition Temperature (DMA Tg) of Polymer Matrix Composites by Dynamic Mechanical Analysis (DMA). West Conshohocken: ASTM International.
[23] DNVGL-ST-0376 (2015) Rotor blades for wind turbines. Oslo: DNV GL AS.
]۲۴[ سیدعلیرضا مقدس موسویزاده، احد ضابط، سمانه صاحبیان سقی (۱۴۰۱) مطالعه رفتار خستگی در کامپوزیتهای زمینه پلیمری تقویت شده با الیاف شیشه (GFRP) در سطوح تنشی مختلف، نشریه مهندسی متالورژی و مواد ۳۲ (۲): ۱-۱۲.
[25] Reifsnider KL (1990) Damage and Damage Mechanics in Fatigue of Composite Material. Edn. Elsevier B.V. 11-77.
[26] Eftekhari M, Fatemi A (2016) On the strengthening effect of increasing cycling frequency on fatigue behaviour of some polymers and their composites: Experiment and modeling. Int J Fatigue 87:153-166.
[27] Epaarachchi J (2011) The effect of viscoelasticity on fatigue behaviour of polymer matrix composites. Creep and Fatigue in Polymer Matrix Composites 492-513.
[28] Nosrati N, Zabett A and Sahebian S (2020) Long-Term Creep Behaviour of E-Glass/Epoxy Composite: Time-Temperature Superposition Principle. Plast. Rubber Compos. 49: 254–62.
[29] Nosrati N, Zabett A and Sahebian S (2022) Stress Dependency of Creep Response for Glass/Epoxy Composite at Nonlinear and Linear Viscoelastic Behavior. Int. J. Polym. Sci. 9733138: 1-11.
[30] Menard KP (2008) Dynamic mechanical analysis: a practical introduction. London: CRC Press.
[31] Cao MS, Sha GG, Gao YF, Ostachowicz W (2017) Structural damage identification using damping: a compendium of uses and features. Smart Materials and Structures 26:1-14.
[32] Tournour M, Treviso A, Genechten BV, Mundo D (2015) Damping in composite materials: properties and models. Composites Part B 78:144-152.
[33] Ullah I (2011) Vibration-based structural condition monitoring of composite structures. PhD Thesis. Engineering and Physical Sciences. The University of Manchester.
[34] Gibson RF (2000) Modal vibration response measurements for characterization of composite materials and structures. Compos Sci Tech 60:2769-2780.