Identification of the Failure Load of a Hyperelastic Body Considering the Location of the Failure

Authors

1 M.Sc. Student, Mech. Eng., Shiraz Univ., Shiraz, Iran

2 Prof., Mech. Eng., Shiraz Univ., Shiraz, Iran

Abstract

In recent years, the definition and analysis of inverse hyperelastic problems due to the wide use of these materials in various industries and also in manufacturing of artificial tissues of the body, has received more attention than before. In mechanical analysis of hyperelastic materials, both material behavior and material deformation are considered nonlinear. In this article, an inverse problem related to the failure of hyperelastic bodies is defined and two different methods are proposed to solve it. The inverse analysis of hyperelastic bodies that have failed, can be useful to prevent the recurrence of failure in these materials. In the inverse problem, it is assumed that a two-dimensional hyperelastic solid is failed and the place of its failure is known. The distribution of the load (boundary conditions) in a part of the boundary is considered unknown and is calculated by solving the inverse problem. By defining an appropriate objective function, the defined inverse problem is converted to an unconstrained optimization problem. To solve the optimization problem, a zero-order method based on the equal interval search method and a first-order method based on the steepest descent method are used. To make the problem more practical, the inverse problem input data, which are the location of failure and the critical equivalent strain, are used with some error. Finally, considering the location of the failure and the critical equivalent strain, the load causing failure is identified. It can be seen that the performance of the first-order method is better than the zero-order method.

Keywords

Main Subjects


[1] Olusanya, A. (1997). A criterion of tensile failure for Hyperelastic materials and its application to viscoelastic-viscoplastic materials. NPL Report CMMT (B), 130.
[2]‌ Volokh, K. Y. (2007). Hyperelasticity with softening for modeling materials failure. J. Mech. Phys. Sol., 55(10), 2237-2264.
[3] Nair, A. U., Lobo, H., & Bestelmeyer, A. M. (2009). Characterization of damage in hyperelastic materials using standard test methods and abaqus. In 2009 simulia customer conference (Vol. 15).
[4] Volokh, K. Y. (2010). On modeling failure of rubber-like materials. Mechanics Research Communications, 37(8), 684-689.
[5] Volokh, K. Y. (2011). Modeling failure of soft anisotropic materials with application to arteries. J. mech. Behave. Biomed. materials, 4(8), 1582-1594.
[6] Cao, J., Ding, X. F., Yin, Z. N., & Xiao, H. (2017). Large elastic deformations of soft solids up to failure: new hyperelastic models with error estimation. Acta Mechanica, 228, 1165-1175.
[7] Schmandt, C., & Marzi, S. (2018). Effect of crack opening velocity and adhesive layer thickness on the fracture behaviour of hyperelastic adhesive joints subjected to mode I loading. Int. J. Adh. Adhesives, 83, 9-14.
[8] Rosendahl, P. L., Drass, M., Schneider, J., & Becker, W. (2018). Crack nucleation in hyperelastic adhesive bonds. ce/papers, 2(5-6), 409-425.
[9]  Rosendahl, P. L., Drass, M., Felger, J., Schneider, J., & Becker, W. (2019). Equivalent strain failure criterion for multiaxially loaded incompressible hyperelastic elastomers. Int. J. Solid Struct., 166, 32-46.
[10]  Russ, J., Slesarenko, V., Rudykh, S., & Waisman, H. (2020). Rupture of 3D-printed hyperelastic composites: Experiments and phase field fracture modeling. J. Mech. Phys. Solid., 140, 103941.
[11] Rosendahl, P. L. (2021). From bulk to structural failure: fracture of hyperelastic materials. Springer Vieweg.
[12]  Rosendahl, P. L., Rheinschmidt, F., & Schneider, J. (2022). Structural bonding with hyperelastic adhesives: Material characterization, structural analysis and failure prediction. In Current Perspectives and New Directions in Mechanics, Modelling and Design of Structural Systems (pp. 281-282). CRC Press.
[13] Zochowski, P., Cegła, M., Szczurowski, K., Mączak, J., Bajkowski, M., Bednarczyk, E., ... & Prasuła, P. (2023). Experimental and numerical study on failure mechanisms of the 7.62× 25 mm FMJ projectile and hyperelastic target material during ballistic impact. Continuum Mechanics and Thermodynamics, 35(4), 1745-1767.
]14[ مائده حاج هاشم خانی، محمدرحیم همتیان (1396)  شناسایی شرایط مرزی در مسائل تغییر فرم مواد هایپرالاستیک،  مجله مهندسی مکانیک امیرکبیر، (49)2، 261. 
[15] Hajhashemkhani, M., Hematiyan, M. R., Khosrowpour, E., & Goenezen, S. (2020). A novel method for the identification of the unloaded configuration of a deformed hyperelastic body. Inverse Problems in Science and Engineering, 28(10), 1493-1512.
[16]  Xu, T., Li, M., Wang, Z., Hu, Y., Du, S., & Lei, Y. (2022). A method for determining elastic constants and boundary conditions of three-dimensional hyperelastic materials. Int. J. Mech.l Sci., 225, 107329.
[17] Bower, A. F. (2009). Applied mechanics of solids. CRC press.
[18] Holzapfel, G.A. (2000) Nonlinear Solid Mechanics: A Continuum Approach for Engineering. 1st Edition, John Wiley & Sons Ltd., Chichester.
[19]  Neff, P., Eidel, B., & Martin, R. J. (2016). Geometry of logarithmic strain measures in solid mechanics. Archive for Rational Mechanics and Analysis, 222, 507-572.
[20] Chen, W. F., & Zhang, H. (1991). Structural plasticity: theory, problems, and CAE software (Vol. 2). New York: Springer-Verlag.
[21] Lode, W. (1926). Versuche über den Einfluß der mittleren Hauptspannung auf das Fließen der Metalle Eisen, Kupfer und Nickel. Zeitschrift für Physik, 36(11-12), 913-939.
[22] Podgórski, J. (1985). General failure criterion for isotropic media. J. eng. Mech., 111(2), 188-201.
[23] Bigoni, D., & Piccolroaz, A. (2004). Yield criteria for quasibrittle and frictional materials. Int. J. solid struct., 41(11-12), 2855-2878.
[24] Arora, J. S. (2004). Introduction to optimum design. Elsevier.