Investigating the effects of cross section asymmetry on the vibration behavior of the nonlinear nanoresonator under internal resonance conditions

Authors

1 Ph.D. Student, Mech. Eng., Semnan Univ., Semnan, Iran

2 Assoc. Prof., Mech. Eng., Semnan Univ., Semnan, Iran

Abstract

Since resonant micro/nanoresonators are very delicate devices with very small dimensions, therefore, any defects and faults caused by the process of manufacturing and laboratory implementation can lead to fundamental changes in their vibration behaviors. Therefore, the effects of the mentioned disadvantages should be considered as much as possible to obtain more accurate sensors with higher efficiency. In this study, a general model of a doubly clamped microbeam (nanotube) with an asymmetric cross-section with external excitation is considered. Then, linear and non-linear behaviors of an ideal nanotube with a circular cross-section are investigated. The results of the simulations indicate a good agreement with the experimental references available in the literature. Then, taking into account the asymmetry in the resonator cross-section, the system is moved away from an ideal model to a more real model, and the possible effects of the asymmetric cross-section in adjustment, reduction, and vanish of internal resonance are investigated and studied. Finally, the advantages and disadvantages caused by asymmetries and the optimal use of such an opportunity to obtain more innovative and complete models with higher efficiency are explained.

Keywords

Main Subjects


[1] M. Li, E.B. Myers, H.X. Tang, S.J. Aldridge, H.C. McCaig, J.J. Whiting, R.J. Simonson, N.S. Lewis, M.L. Roukes, (2010) Nanoelectromechanical resonator arrays for ultrafast, gas-phase chromatographic chemical analysis, Nano Lett. 10: 3899–3903.
[2] S. Schmid, M. Kurek, A. Boisen, (2013) Towards airborne nanoparticle mass spectrometry with nanomechanical string resonators, in: Micro-and Nanotechnol. Sensors, Syst. Appl. V, 2013: p. 872525.
[3] B. Qiu, Y. Zhang, K. Akahane, N. Nagai, K. Hirakawa, (2020) Effect of beam deflection on the thermal responsivity of GaAs-based doubly clamped microelectromechanical beam resonators, Appl. Phys. Lett. 117: 203503.
[4] A. Gharehkhani, E. Abbaspour-Sani, (2018) Study of Static Deflection and Instability Voltage of Phase Shifter Micro-Switches Using a Nonlinear Beam Model and Non-localized elasticity theory, Modares Mech. Eng. 17: 93–100.
[5] R.A. Khalkhali, A. Norouzzadeh, R. Gholami, (2015) Forced vibration analysis of conveying fluid carbon nanotube resting on elastic foundation based on modified couple stress theory, Mme. 15: 27–34.
[6] همدانی س.، , حسینی م. (1399)، تحلیل ارتعاشات غیر­خطی میکروتیرهای اویلر-برنولی چرخان تحت بار با استفاده از نظریه گرادیان کرنش, مکانیک سازه ها و شاره ها، 10 (3) صفحه 193–181.
[7] مامندی ا.، مهرابی ع. (1400)، بررسی دینامیکی میکروتیر حاوی جریان سیال بر روی بستر ویسکوالاستیک-پسترناک و تحت بار محوری با استفاده از نظریه تنش کوپل اصلاح شده, مکانیک سازه ها و شاره ها، 11 (1) صفحه 273–257.
[8] P. Sadeghi, A. Demir, L.G. Villanueva, H. Kähler, (2020) S. Schmid, Frequency fluctuations in nanomechanical silicon nitride string resonators, Phys. Rev. B. 102: 214106.
[9]  شیخلو م.، دلبری ع.، صباحی ع.، عبدالملکی ا. (1401)، تحلیل ارتعاشات نانوصفحه‌های دایره‌ای تحت تحریک الکترواستاتیک غیرخطی با لحاظ اثرات سطح و اندازه مکانیک سازه ها و شاره ها، 12 (5) صفحه 146–133.
[10] A.M. Eriksson, D. Midtvedt, A. Croy, A. Isacsson, (2013) Frequency tuning, nonlinearities and mode coupling in circular mechanical graphene resonators, Nanotechnology. 24.
[11] J.L. Lopez, J. Verd, A. Uranga, G. Murillo, J. Giner, E. Marigó, F. Torres, G. Abadal, N. Barniol, (2009) VHF band-pass filter based on a single CMOS-MEMS doubleended tuning fork resonator, Procedia Chem. 1: 1131–1134.
[12] C.T.-C. Nguyen, (2007) MEMS technology for timing and frequency control, IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 54: 251–270.
[13]         M. Zalalutdinov, B. Ilic, D. Czaplewski, A. Zehnder, H.G. Craighead, J.M. Parpia, (2000) Frequency-tunable micromechanical oscillator, Appl. Phys. Lett. 77: 3287–3289.
[14] A.K. Huttel, G.A. Steele, B. Witkamp, M. Poot, L.P. Kouwenhoven, H.S.J. van der Zant, (2009) Carbon nanotubes as ultrahigh quality factor mechanical resonators, Nano Lett. 9: 2547–2552.
[15] S.L. De Bonis, C. Urgell, W. Yang, C. Samanta, A. Noury, J. Vergara-Cruz, Q. Dong, Y. Jin, A. Bachtold, (2018) Ultrasensitive Displacement Noise Measurement of Carbon Nanotube Mechanical Resonators, Nano Lett. 18: 5324–5328.
[16] S.X.P. Su, H.S. Yang, A.M. Agogino, (2005) A resonant accelerometer with two-stage microleverage mechanisms fabricated by SOI-MEMS technology, IEEE Sens. J. 5: 1214–1222.
[17] R. Katti, H.S. Arora, O. Saira, K. Schwab, M. Roukes, S. Nadj-Perge, Resonant Temperature Readout of Monolayer Graphene, Bull. Am. Phys. Soc. (2021).
[18] M. Kline, Frequency modulated gyroscopes, UC Berkeley, 2013.
[19] P.K. Pattnaik, B. Vijayaaditya, T. Srinivas, A. Selvarajan, (2005) Optical MEMS pressure and vibration sensors using integrated optical ring resonators, in: SENSORS, 2005 IEEE: pp. 4--pp.
[20] E. Benes, R. Thalhammer, M. Groschl, H. Nowotny, S. Jary, (2003) Viscosity sensor based on a symmetric dual quartz thickness shear resonator, in: IEEE Int. Freq. Control Symp. PDA Exhib. Jointly with 17th Eur. Freq. Time Forum, 2003. Proc. 2003: pp. 1048–1054.
[21] L. Matsiev, 3I-2 measurements of liquid density and viscosity with flexural resonators using noise as an excitation source, in: 2006 IEEE Ultrason. Symp., 2006: pp. 884–887.
[22] J. Chaste, A. Eichler, J. Moser, G. Ceballos, R. Rurali, A. Bachtold, (2012) A nanomechanical mass sensor with yoctogram resolution, Nat. Nanotechnol. 7: 301–304
[23] F.R. Braakman, M. Poggio, Force sensing with nanowire cantilevers, ArXiv. 30 (2019) 332001.
[24] N. Jaber, S. Ilyas, O. Shekhah, M. Eddaoudi, M.I. Younis, (2018) Multimode MEMS resonator for simultaneous sensing of vapor concentration and temperature, IEEE Sens. J. 18: 10145–10153
[25] P. Stupar, O. Opota, G. Longo, G. Prod’hom, G. Dietler, G. Greub, S. Kasas, (2017) Nanomechanical sensor applied to blood culture pellets: a fast approach to determine the antibiotic susceptibility against agents of bloodstream infections, Clin. Microbiol. Infect. 23: 400–405.
[26] G. Wu, J. Xu, E.J. Ng, W. Chen, (2020) MEMS Resonators for Frequency Reference and Timing Applications, J. Microelectromechanical Syst. 29: 1137–1166.
[27] H. Askari, H. Jamshidifar, B. Fidan, (2017) High resolution mass identification using nonlinear vibrations of nanoplates, Meas. J. Int. Meas. Confed. 101: 166–174.
[28] N. Kacem, J. Arcamone, F. Perez-Murano, S. Hentz, (2010) Dynamic range enhancement of nonlinear nanomechanical resonant cantilevers for highly sensitive NEMS gas/mass sensor applications, J. Micromechanics Microengineering. 20.
[29] C. Lan, W. Qin, W. Deng, (2015) Energy harvesting by dynamic unstability and internal resonance for piezoelectric beam, Appl. Phys. Lett. 107.
[30] J.F. Rhoads, S.W. Shaw, K.L. Turner, R. Baskaran, (2005) Tunable microelectromechanical filters that exploit parametric resonance, J. Vib. Acoust. Trans. ASME. 127: 423–430.
[31] R. Potekin, S. Dharmasena, H. Keum, X. Jiang, J. Lee, S. Kim, L.A. Bergman, A.F. Vakakis, H. Cho, (2018) Multi-frequency atomic force microscopy based on enhanced internal resonance of an inner-paddled cantilever, Sensors Actuators A Phys. 273: 206–220.
[32] R. Potekin, S. Dharmasena, D.M. McFarland, L.A. Bergman, A.F. Vakakis, H. Cho, (2017) Cantilever dynamics in higher-harmonic atomic force microscopy for enhanced material characterization, Int. J. Solids Struct. 110: 332–339.
[33] H.M. Ouakad, H.M. Sedighi, M.I. Younis, (2017) One-to-One and Three-to-One Internal Resonances in MEMS Shallow Arches, J. Comput. Nonlinear Dyn. 12.
[34] A.H. Ramini, A.Z. Hajjaj, M.I. Younis, (2016) Tunable resonators for nonlinear modal interactions, Sci. Rep. 6: 1–9.
[35] C. Samanta, P.R. Yasasvi Gangavarapu, A.K. Naik, (2015) Nonlinear mode coupling and internal resonances in MoS2 nanoelectromechanical system, Appl. Phys. Lett. 107.
[36] A. Eichler, M. Del Álamo Ruiz, J.A. Plaza, A. Bachtold, (2012) Strong coupling between mechanical modes in a nanotube resonator, Phys. Rev. Lett. 109: 1–5.
[37] W.G. Conley, A. Raman, C.M. Krousgrill, S. Mohammadi, (2008) Nonlinear and nonplanar dynamics of suspended nanotube and nanowire resonators, Nano Lett. 8: 1590–1595.
[38] ابراهیمی ر. (1401) تحلیل غیرخطی ارتعاشات کوپل شده عرضی-طولی در نانوتشدیدگرها تحت نیروی الکترواستاتیک, مدل سازی در مهندسی. 20 (70) صفحه 60-51.
[39] D. Antonio, D.H. Zanette, D. López, (2012) Frequency stabilization in nonlinear micromechanical oscillators, Nat. Commun. 3.
 
[40] C. Chen, D.H. Zanette, D.A. Czaplewski, S. Shaw, D. López, (2017) Direct observation of coherent energy transfer in nonlinear micromechanical oscillators, Nat. Commun. 8: 1–7.
[41] R. Ebrahimi, (2022) Chaos in coupled lateral-longitudinal vibration of electrostatically actuated microresonators, Chaos, Solitons \& Fractals. 156: 111828.
[42] J. Güttinger, A. Noury, P. Weber, A.M. Eriksson, C. Lagoin, J. Moser, C. Eichler, A. Wallraff, A. Isacsson, A. Bachtold, (2017) Energy-dependent path of dissipation in nanomechanical resonators, Nat. Nanotechnol. 12: 631–636.
[43] L.B. Sharos, A. Raman, S. Crittenden, R. Reifenberger, (2004) Enhanced mass sensing using torsional and lateral resonances in microcantilevers, Appl. Phys. Lett. 84: 4638–4640.
[44] O. Sahin, S. Magonov, C. Su, C.F. Quate, O. Solgaard, (2007) An atomic force microscope tip designed to measure time-varying nanomechanical forces, Nat. Nanotechnol. 2: 507–514.
[45] B.E. DeMartini, J.F. Rhoads, M.A. Zielke, K.G. Owen, S.W. Shaw, K.L. Turner, (2008) A single input-single output coupled microresonator array for the detection and identification of multiple analytes, Appl. Phys. Lett. 93: 1–4.
[46] N. Ghaemi, A. Nikoobin, M.R. Ashory, (2022) A comprehensive categorization of micro/nanomechanical resonators and their practical applications from an engineering perspective: a review, Adv. Electron. Mater. 8: 2200229.
[47] C.H. Ho, R.A. Scott, J.G. Eisley, (1975) Non-planar, non-linear oscillations of a beam-I. Forced motions, Int. J. Non. Linear. Mech. 10: 113–127.
[48] S. Schmid, L.G. Villanueva, M.L. Roukes, (2016) Fundamentals of nanomechanical resonators,.
[49] V. Sazonova, Y. Yaish, H. Üstünel, D. Roundy, T.A. Arias, P.L. McEuen, (2004) A tunable carbon nanotube electromechanical oscillator, Nature. 431: 284–287.