Identification of a Generalized Prandtl-Ishlinskii Model for a Micro Positioning System Actuated by Shape Memory Alloys Actuator

Authors

1 Mechanical Engineering Faculty, Noshirvani Babol University of Technology, Babol, Iran

2 Mechanical Engineering Department,, Ferdowsi University of Mashhad

3 Mechanical Engineering Faculty, Noshirvani Babol University of Technology,

Abstract

The application of Shape Memory Alloy (SMA) materials, which are one of the subcategories of smart materials, as an actuator has significantly increased in recent years. However, the application of SMA actuators is restricted due to their slow response and complexity resulting from the nonlinear characteristics of these materials, such as asymmetric hysteresis and saturation. Several methods have been introduced to model these actuators. One of the most powerful and well-known structures for modeling systems with hysteresis behavior is the Generalized Prandtl-Ishlinskii (GPI) model, which is widely used to control these actuators due to its analytical inverse. The current research investigates the reduction of the response time of a micro-positioning platform with two mutual actuators. Based on the obtained experimental results, an experimental-based model using the GPI model was identified. By extracting the inverse of this identified model and implementing it into the input of the system, the issue of removing nonlinear characteristics and linearizing the system was considered for controller design. The results showed that the GPI model properly described the nonlinear behavior of the system despite the complexity caused by the interaction of two mutual actuators. However, identifying a comprehensive model to accurately describe the SMA actuator requires great effort.

Keywords

Main Subjects


[1]  W. Wang et al. (2020) A new hysteresis modeling and optimization for piezoelectric actuators based on asymmetric Prandtl-Ishlinskii model. Sen. Act., A Phys. 316: 112431
[2]  Q. Xu and Y. Li (2008) Structure Improvement of an XY Flexure Micromanipulator for Micro/Nano Scale Manipulation. IFAC 41(2): 12733-12738.
[3]  Y. Li and Q. Xu (2009) Design and analysis of a totally decoupled flexure-based XY parallel micromanipulator. IEEE Trans. Robot 25(3): 645–657.
[4]  B. Ding and Y. Li (2014) Design and analysis of a decoupled XY micro compliant parallel manipulator. IEEE Int. Conf. Robot. Bio, IEEE ROBIO 2014: 1898–1903.
[5]  A. AbuZaiter, O. F. Hikmat, M. Nafea, and M. S. M. Ali (2016) Design and fabrication of a novel XYθZ monolithic micro-positioning stage driven by NiTi shape-memory-alloy actuators. Smart Mat. Struct. 25(10): 105004.
[6]  M. Sasaki, W. Kamada, and K. Hane (1999) Two-dimensional control of shape-memory-alloy actuators for aligning a si micromachined pinhole of spatial filter. Jap. J. Appl. Phys., Part 1 Regul. Pap. Short Notes Rev. Pap. 38(12): 7190–7193.
[7]  Y. M. Han, C. J. Park, and S. B. Choi (2003) End-point position control of a single-link arm using shape memory alloy actuators. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 217(8): 871–882.
[8]  E. Asua, A. García-Arribas, and V. Etxebarria (2008) Micropositioning using shape memory alloy actuators. Eur. Phys. J. Spec. Top. 158(1): 231–236.
[9]  H. Ashrafiuon and V. R. Jala (2009) Sliding mode control of mechanical systems actuated by shape memory alloy. J. Dyn. Syst. Meas. Cont. Trans. ASME 131(1): 1–6.
[10] M. Al Janaideh, S. Rakheja, and C. Y. Su (2011) An analytical generalized Prandtl-Ishlinskii model inversion for hysteresis compensation in micropositioning control.  IEEE/ASME Trans. Mech. 16(4): 734–744.
[11] S. Park and D. Hwang (2020) An experimental study on precision positioning characteristics of shape memory alloy actuator. Microsyst. Tech. 26(9): 2801–2807.
[12] شکی س، ذاکرزاده م (1395) مدلسازی و کنترل عملگر آلیاژ حافظه­دار با روش مد لغزشی فازی. م م مدرس. ۱۶ (۷) :۳۵۳-۳۶۰.
[13] سلطانی گردفرامرزی م, بزرگ س م, ذاکرزاده م. (1394) تخمین مقاوم ضریب سختی فنر در عملگر آلیاژ حافظه­دار توسط فیلتر کالمن توسعه یافته. م سازه­ها و شاره­ها5(4): 69-81.
 
[14] رضویلر ر، فتحی ع، دردل م، ارغوانی هادی ج (1396) تحلیل دینامیکی رفتار شبه الاستیک یک تیر از جنس آلیاژ حافظ شکل. م م مدرس ۱۷ (۱۲) :۲۳۳-۲۲۳.
[15] چهاردولی ح، شفیعی ا، اقتصاد م (1401) کنترل فازی-PID  مکانیزم هایی با عملگرهای متضاد از جنس آلیاژ حافظه دار. ف م هوافضا 18(2): 19-7.
[16] S. Saito, S. Oka, and R. Onodera (2022) Modelling of a shape memory alloy actuator for feedforward hysteresis compensator considering load fluctuation, CAAI Trans. Intell. Tech., vol. 7, no. 4, pp. 549–560
[17] M. R. Zakerzadeh and H. Sayyaadi (2013) Precise position control of shape memory alloy actuator using inverse hysteresis model and model reference adaptive control system. Mech. 23(8): 1150–1162.
[18] L. Liu, K. K. Tan, C. S. Teo, S. L. Chen, and T. H. Lee (2013) Development of an approach toward comprehensive identification of hysteretic dynamics in piezoelectric actuators. IEEE Trans. Cont Sys. Tech. 21(5): 1834–1845.
[19] P. Krejci and K. Kuhnen (2001) Inverse control of systems with hysteresis and creep. IEE Proc. Cont. Theory Appl. 148(3): 185–192.
[20] A. Pai, M. Riepold, and A. Trächtler (2018) Model-based precision position and force control of SMA actuators with a clamping application. Mechat, 50: 303–320.
[21] K. Kuhnen (2003) Modeling, identification and compensation of complex hysteretic nonlinearities: A modified prandtl-ishlinskii approach. Eur. J. Cont. 9(4): 407–418.
[22] M. Al Janaideh, J. Mao, S. Rakheja, W. Xie, and C. Y. Su (2008) Generalized Prandtl-Ishlinskii hysteresis model: Hysteresis modeling and its inverse for compensation in smart actuators. Proc. IEEE Conf. Decis. Cont. 5182–5187.
[23] M. Al Janaideh (2009) Generalized Prandtl-Ishlinskii Hysteresis Model and its Analytical Inverse for Compensation of Hysteresis in Smart Actuators. Concordia University, Montral.