Investigating the efficiency of error estimation based on strees recovery in the adaptive solution of functionally graded materials by isogeometric method

Authors

1 Ph.D Student of structural engineering, Department of Civil Engineering, Shahrood Branch, Islamic Azad University, Shahrood, Iran.

2 Assistant Professor, Department of Civil Engineering, Shahrood Branch, Islamic Azad University, Shahrood, Iran.

Abstract

In today's era, it is necessary to analyze functionally graded materials. Since the finite element method in the analysis of these materials has limitations and the error is an inseparable part of any numerical analysis, therefore, finding a solution to estimate the error in calculations is important. In the finite element method, modifying or enriching the network to reduce the error is associated with such things as the overlapping of elements during displacement, the formation of elements with zero areas, and the increase of cost in calculations. In this research, the isogeometric method has been used for the first time in the analysis of problems with functionally graded materials in the adaptive solution using the method of moving control points as adaptive correction based on error estimation, with the approach of improving the stress field. By comparing the exact and approximate error norm in the solved examples, the effectivity index is more than 75%, which shows the effectiveness of the proposed error estimator. In addition, improving the network of control points is effective in reducing the error rate by more than 60% and can be used to increase the accuracy of the results.

Keywords


[1] Hughes TJ, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput Methods Appl Mech Eng. 194(39-   41):4135-95.
 [2] Cottrell JA, Hughes TJ, Reali A (2007) Studies of  refinement and continuity in isogeometric structural analysis. Comput Methods Appl Mech Eng. 196(41-44):4160-83.
 [3] Wang D, Xuan J (2010) An improved NURBS-based isogeometric analysis with enhanced treatment of essential boundary conditions. Comput Methods Appl Mech Eng. 199(37-40):2425-36.
 [4] Herrema AJ, Wiese NM, Darling CN (2017) Ganapathysubramanian B, Krishnamurthy A, Hsu MC. A framework for parametric design optimization using isogeometric analysis. Comput Methods Appl Mech Eng. 316:944-65.
 [5] Cottrell JA, Hughes TJ, Bazilevs Y (2009) Isogeometric analysis: toward integration of CAD and FEA. John Wiley & Sons.
 [6] Zienkiewicz OC(2006) The background of error estimation and adaptivity in finite element computations. Comput Methods Appl Mech Eng.195(4-6):207-13.
 [7] Babuška I, Strouboulis T, Upadhyay CS, Gangaraj SK(1995) A model study of element residual estimators for linear elliptic problems: The quality of the estimators in the interior of meshes of triangles and quadrilaterals. Comput Struct 57(6):1009-28.
[8] Gui WZ, Babuska I(1985). The h, p and hp  versions of the finite element method in 1 dimension. Part 1. The error analysis of the p-version. Maryland Univ College Park Lab For Numerical Analysis.
[9] Zienkiewicz OC, Zhu JZ(1992). The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique. Int J Numer Methods Eng .33(7):1331-64.
[10] Zienkiewicz OC, Zhu JZ(1992). The superconvergent patch recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity. Int J Numer Methods Eng .33(7):1365-82.
[11] Ganjali A, Hassani B(2020). Error Estimation and Stress Recovery by Patch Equilibrium in the‎‎ Isogeometric Analysis Method. Adv Appl Math Mech.
 [12] Hassani B, Ganjali A, Tavakkoli M(2012) An isogeometrical approach to error estimation and stress recovery. Eur J Mech A Solids. 31(1):101-9.
]13[ حسنی بهروز , گنجعلی احمد,  توکلی سید مهدی (1390). برآورد خطا و بهبود میدان تنش به دست آمده از تحلیل مسأله‌ها به روش ایزوژئومتریک. مهندسی عمران فردوسی, 22(2).‎
 [14] Gyi W, Babuska I (1986)The h, p and hp version of the finite element method in one dimention: Part 1: The error analysis of the p version. Part 2: The error analysis of the h and hp version. Part 3: The adaptive hp version. Numer Math.48:577-683.
 [15] Zienkiewicz OC, Zhu JZ(1989) Error estimates and adaptive refinement for plate bending problems. Int J Numer Methods Eng.28(12):2839-53.
[16] Kjetil AJ (2009) An adaptive isogeometric finite element Analysis. M.S. thesis, Norwegian University of Science and Technology.
 
[17] Michael RD, Bert J, Bernd S (2010) Adaptive isogeometric analysis by local h-refinement with T-splines. Comput Methods Appl Mech Eng 199:264-275.
 [18] ] Yu P, Anitescu C, Tomar S, Bordas S, Kerfriden P(2018) Isogeometric analysis with local adaptivity based on a posterior error estimation for elastodynamics. arXiv preprint arXiv:1804.03191.
 [19] Mirzakhani A, Hassani B, Ganjali A(2015) Adaptivity in isogeometric analysis of structures using error estimation methods based on stress recovery. J Solid Fluid Mech.5(3):79-91.
 [20] Miyamoto Y, Niino M, Koizumi M(1997) FGM research programs in Japan—from structural to functional uses. InFunctionally Graded Materials (pp. 1-8). Elsevier Science BV.
 [21] Naebe M, Shirvanimoghaddam K(2016) Functionally graded materials: A review of fabrication and properties. Appl Mater Today.5:223-45.
 [22] Wang Y, Wang Z, Xia Z, Poh LH(2018). Structural design optimization using isogeometric analysis: a comprehensive review. Comput Model Eng Sci.117(3):455-507.
 [23] Kim JH, Paulino GH(2002). Isoparametric graded finite elements for nonhomogeneous isotropic and orthotropic materials. J Appl Mech.69(4):502-14.
[24] Burlayenko VN, Altenbach H, Sadowski T, Dimitrova SD, Bhaskar A(2017). Modelling functionally graded materials in heat transfer and thermal stress analysis by means of graded finite elements. Appl Math Model.45:422-38.
[25] Rogers DF. An introduction to NURBS: with historical perspective. Morgan Kaufmann( 2001).
[26] Piegl L, Tiller W. The NURBS book. Springer Science & Business Media(1996).
[27] Reddy JN(1993) An Introduction to the Finite Element Method McGraw-Hill. Inc., New York.
[28] Hassani B, Moghaddam NZ, Tavakkoli SM(2009). Isogeometrical solution of Laplace equation.
]29[ حسنی بهروز, ظریف مقدم  ناصر(1389). مدلسازی و تحلیل همزمان مسایل تنش مسطح با مصالح FG به روش ایزوژئومتریک. علوم کاربردی و محاسباتی در مکانیک, 22.‎‎
[30] Zienkiewicz OC, Zhu JZ. The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique. Int J Numer Methods Eng . 1992 May 30;33(7):1331-64.
[31] Zienkiewicz OC, Taylor RL(2005) The finite element method for solid and structural mechanics. Elsevier.