Detection of Single and Multiple Cracks in Circular Cylindrical Shells Using Modal Analysis and Wavelet Transform

Authors

1 Department of Mechanical Engineering, Shahid Beheshti University, Tehran, Iran

2 Beheshti University

3 Lecturer, Faculty of Mechanical Engineering, University of Eyvanekey

Abstract

In this paper, a method is studied for detecting single and multiple cracks in the thin and thick-walled Circular cylindrical shell based on the modal analysis and wavelet transform without using baseline modal data. In this research, the studied crack is the type of circumference and all over and it is also modeled in the form of hairline and without width by the ABAQUS software. The mode shapes of two thin and thick-walled cylindrical shells are obtained with free-free and simple-simple support conditions and with different cracks ratio. The cracked sample response is moved to static wavelet transform toolbox in the MATLAB software. Then, the noise signal is obtained by assuming crack as noise and removing noise at the first decomposition level of the input signal and. Finally, after reviewing 3240 various modes, the best wavelets are introduced to accurate detection of the cracks up to 2% crack ratio and without displaying the support effects.

Keywords


  • Sarker L, Xiang Y, Zhu XQ, Zhang YY (2015) Damage Detection of Circular Cylindrical Shells by Ritz Method and Wavelet Analysis. Electronic Journal of Structural Eng 14(1): 62-74.
  • Friswell MI, Penny JET (2002) Crack Modeling for Structural Health Monitoring. Structural Health Monitoring 1(1): 139-148.
  • Bathe KJ (1996) Finite Element Procedures, ed. 4, Prentice Hall Inc.
  • ABAQUS Analysis User’s Manual (2006), ed. 6.6, Hibbitt, Karlsson & Sorensen Inc.
  • Chiu JK, Cermak JE, Chou LS (2007) Random decrement based method for modal parameter identification of a dynamic system using acceleration responses. Journal of Wind Eng and Industrial Aerodynamics (95): 389-410.
  • Zhong S, Oyadiji SO (2007) Crack detection in simply supported beams without baseline modal parameters by stationary wavelet transform. Mech Systems and Signal Processing (21): 1853-1884.
  • Zhong S, Oyadiji SO (2009) Crack detection in simply supported beams using stationary wavelet transform of modal data. Structural Control And Health Monitoring.
  • Zhong S, Oyadiji SO (2011) Detection of cracks in simply-supported beams by continuous wavelet transform of reconstructed modal data. Computers and Structure 127-148.
  • Bahador A (2013) Identification of cracks in beams using vibration modal characteristics, Thesis submitted to the university of Manchester.
  • Cheraghi N, Zou GP, Taheri F (2005) Piezoelectric-Based Degradation Assessment of a Pipe Using Fourier and Wavelet Analyses, Journal of Computer-Aided Civil and infrastructure engineering 20: 369-382.
  • Cheraghi N, Taheri F (2007) A damage index for structural health monitoring based on the empirical mode decomposition. Journal of Mechanic of Materials and Structures 2: 43-62.
  • دهقانی اسکویی ص، اسمعیل پوراستکانچی هـ، وفائی ا (1386) بررسی ارتعاش آزاد پوسته­های استوانه­ای ترک­دار، نشریه علمی و پژوهشی شریف 33-27 :40.

 

  • Zhu X, Li TY, Zhao Y, Yan J (2007) Vibration power flow analysis of thin cylindrical shell with a circumferential surface crack. Journal Sound and Vibration 302: 332-349.
  • Hu H, Wu C, Lu WJ (2011) Damage detection of circular hollow cylinder using modal strain energy and scanning damage index methods. journal of Compute Structure 89: 149-160.
  • Zhang Y, Lie ST, Xiang ZH, Lu QH (2014) A frequency shift curve based damage detection method for cylindrical shell structures. Journal of Sound and Vibration 333: 1671-1671.
  • Rawat A, Matsagar V, Nagpal A K (2016) Finite Element Analysis of Thin Circular Cylindrical Shells. Proc Indian Natn Sci Acad 82(2):349-355.
  • Ovanesova AV, Suarez LE (2004) Applications of wavelet transforms to damage detection in frame structures. Journal of Engineering Structures 26: 39-49.
  • Misiti M, Misiti Y, Oppenheim G, Poggi J (2013) Wavelet Toolbox™ Getting Started Guide, ed. 4.11, The MathWorks Inc.
  • Kim H, Melhem H (2004) Damage detection of structures by wavelet analysis, Journal of Engineering Structures 26: 347-362.
  • Moradi S, Tavaf V (2013) Crack detection in circular cylindrical shells using differential quadrature method, International Journal of Pressure Vessels and Piping 111: 209-216.
  • طواف و، مرادی ش، جمشیدی مقدم پ، ابیض ع (1390) تشخیص ترک در پوسته استوانه‌ای، پایان نامه کارشناسی ارشد ، دانشگاه شهید چمران اهواز

 

 

 

  • طواف و، مرادی ش، جمشیدی مقدم پ، ابیض ع (1393) تشخیص ترک در پوسته استوانه‌ای ترک دار با طول محدود، بیست و دومین کنفرانس سالانه مهندسی مکانیک.
  • Kiarasi F, Babaei M, Mollaei S, Mohammadi M, Asemi K (2021). Free vibration analysis of FG porous joined truncated conical-cylindrical shell reinforced by graphene platelets. Advances in nano research, 11(4): 361-380.‏
  • Shahani A, Kiarasi F (2021). Numerical and Experimental Investigation on Post-buckling ‎Behavior of Stiffened Cylindrical Shells with Cutout subject to ‎Uniform Axial Compression. Journal of Applied and Computational Mechanics, doi: 10.22055/jacm.2021.33649.2261
  • Babaei M, Asemi K, Kiarasi F (2021) Dynamic analysis of functionally graded rotating thick truncated cone made of saturated porous materials, Thin-Walled Structures.164:107852.
  • Babaei M, Asemi K, Kiarasi F (2020) Static response and free-vibration analysis of a functionally graded annular elliptical sector plate made of saturated porous material based on 3D finite element method, Mechanics Based Design of Structures and Machines, 1-25.
  • Asemi K, Babaei M, Kiarasi F (2020) Static, natural frequency and dynamic analyses of functionally graded porous annular sector plates reinforced by graphene platelets, Mechanics Based Design of Structures and Machines, 1-29.
  • Babaei, M., Kiarasi, F., Hossaeini Marashi, S. M., Ebadati, M., Masoumi, F., & Asemi, K. (2021). Stress wave propagation and natural frequency analysis of functionally graded graphene platelet-reinforced porous joined conical–cylindrical–conical shell. Waves in Random and Complex Media, 1-33.
  • Babaei, M., & Asemi, K. (2020). Static, dynamic and natural frequency analyses of functionally graded carbon nanotube annular sector plates resting on viscoelastic foundation. SN Applied Sciences, 2(10), 1-21.
  • Kiarasi, F., Babaei, M., Asemi, K., Dimitri, R., & Tornabene, F. (2021). Three-Dimensional Buckling Analysis of Functionally Graded Saturated Porous Rectangular Plates under Combined Loading Conditions. Applied Sciences, 11(21), 10434.
  • Shahsavari, M., Asemi, K., Babaei, M., & Kiarasi, F. (2021). Numerical Investigation On Thermal Post-buckling Of Annular Sector Plates Made Of FGM Via 3D Finite Element Method. Mechanics of Advanced Composite Structures‎.
  • Babaei, M., Asemi, K., & Safarpour, P. (2019). Buckling and static analyses of functionally graded saturated porous thick beam resting on elastic foundation based on higher order beam theory. Iranian Journal of Mechanical Engineering Transactions of the ISME, 20(1), 94-112.

 

  • الرکابی, محمد, رضایی پژند, جلیل, معین فرد, & حمید. (2019). مقایسه‌ی عملکرد الاستومرهای الکترو/مگنتورئولوژیک در میراسازی ارتعاشات روتورهای دوار. مکانیک سازه ها و شاره ها, 9(3), 139-153.
  • ملاعلی پور, محمد, شرعیات, & محمد. (2019). تحلیل تنش ورق‌های دایره‌ای با تغییرات ضخامت بصورت نامتقارن عرضی. مکانیک سازه ها و شاره ها, 9(1), 97-109.
  • Babaei, M., Asemi, K., & Nazari, N. (2020). Low velocity impact analysis of FGCNT annular plate. نشریه پژوهشی مهندسی مکانیک ایران, 22(3), 183-205.‏
  • پاچناری, محمد حسن, مظفری, علی, شرعیات, & محمد. (2016). تحلیل اجزای محدود پاسخ غیرخطی ضربه کم سرعت ورق کامپوزیتی ویسکوالاستیک، به کمک تئوری لایه ای.مکانیک سازه ها و شاره ها,6(3), 97-108.‎
  • علی موری, پویان, مرادی, شاپور, چینی پرداز, & رحیم. (2017). بروزرسانی مدل اجزا محدود سازه توسط آنالیز مودال محیطی و الگوریتم بهینه سازی زنبور عسل.مکانیک سازه ها و شاره ها, 7(4), 117-133.‎
  • بشیرنژاد دهقان, هادی, نظری, مهدی زاده رخی, & مسعود. (2021). تحلیل ترک در مسائل انتشار-ترموالاستیسیته تعمیم یافته با استفاده از روش المان محدود توسعه‌یافته.مکانیک سازه ها و شاره ها, 11(5), 63-82.‎