Free vibration of micro/nano homogeneous beams coated by functionally graded porous layer using analytical and numerical methods

Author

Abstract

In this paper, the free vibration of homogeneous micro / nano beams coated by a functionally graded layer is investigated based on the Eringen's nonlocal elasticity theory. In order to extract the equations of motion, the first-order shear deformation beam theory (Timoshenko's beam theory) has been used. The obtained equations of motion are solved using two different analytical and numerical methods for different boundary conditions. In the analytical method, the equations of motion are first solved and the general functions for the displacements are obtained. The functions include a number of unknown parameters and constants. Then, by considering the boundary condition equations at both ends of the beam, a set of algebraic equations is extracted. Finally, the natural frequencies are obtained form the nonzero solution of the algebraic equations. In the numerical solution, the generalized differential quadrature method is used to solve the equations of motion. In the results section, first, the validity of present methods should be confirmed. Hence, the results obtained from this article are compared with the corresponding results presented in the litterature. Then, the results of the two analytical and numerical methods are compared, which confirms the consistency of the results of both two methods. The effects of thickness of porous layer and also the percentage of porosity of porous layer on the natural frequencies of beams are studied.

Keywords


[1] Udupa G, Rao SS, Gangadharan K (2014) Functionally graded composite materials :an overview. Proc Mat Sci 5: 1291-1299.
[2] Rafiee M, Yang J, Kitipornchai S (2013) Large amplitude vibration of carbon nanotube reinforced functionally graded composite beams with piezoelectric layers. Compos Struct 96: 716-725.
[3] Smith B, Szyniszewski S, Hajjar J, Schafer B, Arwade S (2012) Steel foam for structures: are view of applications, manufacturing and material properties. J Constr Steel Res 71: 1-10.
[4] Ashby MF, Evans T, Fleck NA, Hutchinson J, Wadley H, Gibson L (2000) Metal foams :A design guide. Elsevier.
[5] Badiche X, Forest S, Guibert T, Bienvenu Y, Bartout J-D, Ienny P, Croset M, Bernet H (2000) Mechanical properties and non-homogeneous deformation of open-cell nickel foams :Application of the mechanics of cellular solids and of porous materials. Mat Sci Eng A-Struct 289(1): 276-288.
[6] Banhart J (2001) Manufacture, characterization and application of cellular metals and metal foams. Prog Mater Sci 46(6): 559-632.
[7] Lopatnikov SL, Gama BA, Haque MJ, Krauthauser C, Gillespie JW ,Guden M, Hall IW (2003) Dynamics of metal foam deformation during Taylor cylinder–Hopkinson bar impact experiment. Compos Struct 61(1): 61-71.
[8] Pinnoji PK, Mahajan P, Bourdet N, Deck C, Willinger R (2010) Impact dynamics of metal foam shells for motorcycle helmets: experiments and numerical modeling. Int J Impact Eng 37(3): 274-284.
[9] Lefebvre L-P, Banhart J, Dunand D(2008) Porous metals and metallic foams: current status and recent developments. Adv Eng Mater 10(9): 775-787.
[10] Ahmad Z, Thambiratnam DP (2009) Dynamic computer simulation and energy absorption of foam-filled conical tubes under axial impact loading. Compos Struct 87(3): 186-197.
[11] Toupin RA (1962) Elastic materials with couple stresses. Arch Ration Mech An 11: 385-414.
[12] Mindlin RD, Tiersten HF (1962) Effects of couple-stresses in linear elasticity. Arch Ration Mech An 11: 415-448.
[13] Mindlin RD (1963) Influence of couple-stresses on stress concentrations. Exp Mech 3: 1-7.
[14] Koiter WT (1964) Couple-stresses in the theory of elasticity: I and II. Proc K Ned Akad B-Ph 67: 17-44.
[15] Aifantis EC (1999) Strain gradient interpretation of size effects. Int J Fracture 95: 1-4.
[16] Eringen AC (1972) Nonlocal polar elastic continua. Int J Eng Sci 10:1-16.
[17] Gurtin ME, Weissmuller J, Larche F (1998) The general theory of curved deformable interfaces in solids at equilibrium. Philos Mag A 1093-1109.
[18] Yang F, Chong ACM, Lam DCC, Tong P (2002) Couple stress based strain gradient theory for elasticity. Int J Solids Struct 39: 2731-2743.
[19] Salehipour H, Shahidi AR, Nahvi H (2015) Modified nonlocal elasticity theory for functionally graded materials. Int J Eng Sci 90: 44-57.
[20] Shafiei N, Mirjavad S, MohaselAfshari B, Rabby S, Kazemi m (2017) Vibration of two-dimensional imperfect functionally graded (2D-FG) porous nano-/micro-beams. Comput Method Appl M 322: 615-632.
[21] Ebrahimi F, Barati MR (2017) Porosity-dependent vibration analysis of piezo-magnetically actuated heterogeneous nanobeams. Mech Syst Signal Pr 93: 445-459.
[22] Shahverdi H, Barati MR (2017) Vibration analysis of porous functionally graded nanoplates. Int J Eng Sci 120: 82-99.
[23] Faleh NM, Ahmed RA, Fenjan RM (2018) On vibrations of porous FG nanoshells. Int J Eng Sci 133: 1-14.
[24] Aria AI, Rabczuk T, Friswell MI (2019) A finite element model for the thermo-elastic analysis of functionally graded porous nanobeams. Eur J Mech A-Solid 77: 103767.
[25] Mohammadi M, Hosseini M, Shishesaz M, Hadi A, Rastgoo A (2019) Primary and secondary resonance analysis of porous functionally graded nanobeam resting on a nonlinear foundation subjected to mechanical and electrical loads. Eur J Mech A-Solid 77: 103793.
[26] Phung-Van P, Thai CH, Nguyen-Xuan H, Abdel-Wahab M (2019) An isogeometric approach of static and free vibration analyses for porous FG nanoplates. Eur J Mech A-Solid 78: 103851.
[27] Phung-Van P, Thai CH, Nguyen-Xuan H, Abdel-Wahab M (2019) Porosity-dependent nonlinear transient responses of functionally graded nanoplates using isogeometric analysis. Compos Part B-Eng 164: 215-225.
[28] Rahmani A, Faroughi S, Friswell MI (2020) The vibration of two-dimensional imperfect functionally graded (2D-FG) porous rotating nanobeams based on general nonlocal theory. Mech Syst Signal Pr 144: 106854.
[29] Behdad Sh, Fakher M, Hosseini-Hashemi Sh (2021) Dynamic stability and vibration of two-phase local/nonlocal VFGP nanobeams incorporating surface effects and different boundary conditions. Mech Mater 153: 103633.
]30[ صیدی ج، محمدی ی (1394) بررسی تحلیلی و عددی تیر‏های ساندویچی هدفمند تحت بار موضعی و خواص وابسته به دما. نشریه علمی مکانیک سازه­ها و شاره­ها 137-127 :(4)5.
]31[ مختاری ع، میردامادی ح، غیور م (1395) آنالیز دینامیکی تیر تیموشنکوی پیش تنیده به کمک روش المان محدود طیفی بر پایه تبدیل موجک. نشریه علمی مکانیک سازه­ها و شاره­ها 22-11 :(4)6. 
]32[ فروزنده س، آریایی ع (1395) تحلیل ارتعاشات مجموعه‌ای از چند تیر تیموشنکوی موازی با اتصالات انعطاف پذیر میانی تحت عبور جرم متحرک. نشریه علمی مکانیک سازه­ها و شاره­ها 86-69 :(2)6.            
[33] Talebizadehsardari P, Salehipour H, Shahgholian-Ghahfarokhi D, Shahsavar A, Karimi M (2020)  Free vibration analysis of the macro-micro-nano plates and shells made of a material with functionally graded porosity: A closed-form solution. Mech Based Des Struc. (Under Publication)
[34] Shu C (2000) Differential quadrature and its application in engineering. Springer, Berlin
[35] Chen D, Yang J, Kitipornchai S (2016)  Free and forced vibrations of shear deformable functionally graded Porous beams. Int J Mech Sci 108-109: 14-29.