Experimental investigation of effect of inlet direction and height on flow pattern and thermal comfort conditions under personalized confluent jets ventilation system

Authors

1 Associate professor, University of Birjand

2 Faculty of Engineering. University of Birjand

3 Department of Mechanical Engineering, University of Birjand

Abstract

In this study, the flow pattern, temperature distribution and thermal comfort index have been experimentally investigated in a room with personalized confluent jets ventilation (CJV) system for different diffusers’ heights of 30 and 160cm from the floor and for two inlet temperatures of 16 and 24°C and three different inlet angles of 0, 22.5 and 45 degrees. The results showed that the above cases can be significantly affected by changing in location of inlet diffuser. So that by placing the inlet diffuser at a height of 160 cm, the occupants’ upper body is strongly affected by the flow and the maximum air velocity in this region, depending on the change of inlet flow angle from zero to 45 degrees, can respectively reach about 1.5 to 1 m/s and this causes the draught dissatisfaction in the occupants’ upper body. However, by placing the diffuser under the desk and at a height of 30cm, the most dissatisfaction caused by draught occurs in the legs and feet. Finally, it can be concluded that the draught dissatisfaction is the most important factor that can limit the use of personalized confluent jets ventilation system.

Keywords


[1] ANSI/ASHRAE Standard 55-2013 AN. Thermal environmental conditions for human occupancy.
[2] ذوالفقاری س­ع، حسن زاده ح، رئیسی م، طاهری م (1397) کاهش اثرات نامطلوب عدم تقارن تابشی برای مسافران اتوبوس از طریق عدم تقارن وزشی تحت   شرایط تابستانه. نشریه علمی مکانیک سازه‌ها و شاره­ها 146-135 :(1)8.
[3] ایمانی نژاد ز، ذوالفقاری س­ع، معرفت م، پاسدار شهری هـ (1395) تأثیر جانمایی‌ دریچه ورودی هوا بر کیفیت هوای داخل و آسایش حرارتی ساکنان در یک اتاق دارای سیستم گرمایش قرنیزی. نشریه علمی مکانیک سازه‌ها و شاره‌ها 270-261 :(3)6.
[4] Karimipanah T, Awbi HB, Blomqvist C, Sandberg M, Fresh AB (2005) Effectiveness of confluent jets ventilation system for classrooms. In Proceedings of the 10th International Conference in Indoor Air Quality and Climate-Indoor Air.
[5] Kaczmarczyk J, Melikov A, Fanger PO (2004) Human response to personalized ventilation and mixing ventilation. Indoor Air 14: 17-29.
[6] Awbi HB (2003) Ventilation of buildings. Taylor & Francis.
[7] Cho YJ, Awbi HB, Karimipanah T (2004) The characteristics of wall confluent jets for ventilated enclosures. Proceedings of Roomvent 2004, Coimbra, Portugal.
[8] Cho Y, Awbi HB, Karimipanah T (2005) Comparison between wall confluent jets and displacement ventilation in aspect of the spreading rate on the floor. In10th International Conference in Indoor Air Quality and Climate (Indoor Air 2005), Beijing, China.
[9] Cho Y, Awbi HB, Karimipanah T (2008) Theoretical and experimental investigation of wall confluent jets ventilation and comparison with wall displacement ventilation. Build Environ 43(6): 1091-1100.
[10] Janbakhsh S, Moshfegh B (2014) Experimental investigation of a ventilation system based on wall confluent jets. Build Environ 80: 18-31.
[11] Janbakhsh S, Moshfegh B (2014) Numerical study of a ventilation system based on wall confluent jets. HVAC&R Res 20(8): 846-861.
[12] Arghand T, Karimipanah T, Awbi HB, Cehlin M, Larsson U, Linden E (2015) An experimental investigation of the flow and comfort parameters for under-floor, confluent jets and mixing ventilation systems in an open-plan office. Build Environ 92: 48-60.
[13] Svensson K, Rohdin P, Moshfegh B (2015) A computational parametric study on the development of confluent round jet arrays. Eur J Mech B-Fluid 53: 129-147.
[14] Andersson H, Cehlin M, Moshfegh B (2018) Experimental and numerical investigations of a new ventilation supply device based on confluent jets. Build Environ 137: 18-33.
[15] Zolfaghari SA, Izadi M, Hooshmand SM, Rateghi R, Beheshtian M, Teymoori S (2020) Experimental assessment of temperature distribution and draught discomfort for a personalized CJV system. The 28th Annual International Conference of Iranian Society of Mechanical Engineers-ISME.
[16] Andersson H, Kabanshi A, Cehlin M, Moshfegh B (2020) On the Ventilation performance of low momentum confluent jets supply device in a classroom. Energies 13(20): 5415.
[17] Kaczmarczyk J, Zeng Q, Melikov AK, Fanger PO (2002) The effect of a personalized ventilation system on perceived air quality and SBS symptoms. In 9th International Conference on Indoor Air Quality and Climate.
[18] Kaczmarczyk J, Melikov A, Bolashikov Z, Nikolaev L, Fanger PO (2006) Human response to five designs of personalized ventilation. HVAC&R Res 12(2): 367-384.
[19] Conceição EZ, Santiago CI, Lúcio M, Awbi HB (2018) Predicting the air quality, thermal comfort and draught risk for a virtual classroom with desk-type personalized ventilation systems. Buildings 8(2): 35.
[20] Fanger PO (1970) Thermal comfort: Analysis and applications in environmental engineering. Danish Technical Press. Copenhagen, Denmark.
[21] Ashrae AH (2009) American society of heating, refrigerating and air-conditioning engineers. Inc., Atlanta.
[22] ISO I. Standard 7730. Ergonomics of the Thermal Environment–Analytical Determination and Interpretation of Thermal Comfort Using Calculation of the PMV and PPD Indices and Local Thermal Comfort Criteria, ISO, Geneva. 2005.