The effect of aluminide coating on the creep life of Rene 80 nickel base superalloy

Authors

1 Department of Aerospace Engineering, Air University of Shahid Sattari, Tehran, Iran

2 Department of Aerospace Engineering, Air University of Shahid Sattari,Tehran, Iran

Abstract

In this paper, the creep strength of Rene 80 superalloy in both uncoated and coated states is studied experimentally. The operation temperature range of this superalloy is 760–982 °C, in order to increase its resistance to surface degradation factors such as oxidation, hot corrosion and erosion at high temperatures, a coating is applied on it and its use without coating is not recommended. In this paper, diffiosion aluminide coatings were applied to this superalloy by two separate methods of pack cemantation and slurry under the brand names of Codep B and IP1041, respectively, and the effect of these coatings on the creep life of this superalloy at 982 °C and metallography is examined by SEM was investigated. For this purpose, samples according to ASTM-E8 standard were produced and after coating along with uncoated samples were subjected to creep test according to ASTM-E139 standard. Control parameters including temperature, stress and service life of uncoated samples are evaluated according to C50TF28 standard. Uncoated creep samples lost their strength after an average of 33 hours and rupture occured. Codep-B coated samples lost their strength after on average of 45 hours and slurry-coated samples lost their strength after on average of 51 hours. The results showed that the coatings increased the creep life of the coated samples compared to the uncoated samples by at least 12 hours.

Keywords


[1] Erickson, GL (1994) Super alloy development for aero and industrial gas Turbine. ASM Int. Cannon-Muskegon Corporation, Michigan.
[2] Domas PA, Antolovich SD (1985) A mechanistically based model for high temperature notched LCF of rené 80. Eng Fract Mech 21(1): 203-214.
 [3] Goswami T, Hanninen H (2001) Dwell effects on high temperature fatigue damage mechanisms. Mat Des 22(3): 217-236.
[4] Safari J, Nategh S (2006) On the heat treatment of Rene-80 nickel-base superalloy. J Mat Proc Tech 176(1): 240-250.
[5] Cappelli PG (1978) Coating processes in high temperature alloy for gas Turbines. Appl Sci Pub, London.
[6] Pettit FS, Goward GW (1983) Coatings for high temperature applications. Appl Sci Pub, London.
[7] Chang WH (1987) Tensile embitterment of turbine blade alloys after high-temperature exposure, Superalloy. Mater Sci Eng 88.
[8] Kameda J, Bloomer TE, Sugita Y, Ito A, Sakurai S (1997) Mechanical properties of aluminized CoCrAlY coatings in advanced gas turbine blades. Mat Sci Eng A 234-236: 489-492.
[9] Goward GW (1970) Current research on the surface protection of superalloys for gas turbine engines. J Met 31.
[10] Eskner M (2004) Mechanical Behavior of gas turbine coatings. Doctoral Thesis, Royal Institute of Technology.
[11] Kolkman HJ (1987) Creep, fatigue and their interaction in coated and uncoated René 80. 91Mater. Sci Eng 89: 81-91.
[12] Webb G, Strangman T, Frani N, Date C, Willson L Rana R (1996) Prediction of oxidation assisted crack growth behaviour within hot section gas turbine components. Superalloys 345-352.
[13] Matsuda N, Umezawa S, Kojima Y (1991) Effect of corrosion resistance coating on fatigue-creep interaction live of NI base supperalloy Rene 80. J Soc Mat Sci 40(449): 165.
[14] Seong-Ho H, Gi-Ryong L, Chang-Yong J, In-Bae K, Hak-Min K (1993) A study on the creep behavior of Rene 80 superalloy. Kor J Mat Res 3(6): 575-584.
[15] Rahmani K, Nategh S (2008) Influence of aluminide diffusion coating on the tensile properties of the Ni-base superalloy René 80. Surf Coat Tech 202(8): 1385-1391.
[16] Rahmani K, Nategh S (2008) Influence of aluminide diffusion coating on low cycle fatigue properties of Ren´e 80. Mat Sci Eng A 486: 686-695
[17] Aghaie-Khafri M, Farahany S (2010) Creep life prediction of thermally exposed Rene 80 superalloy.  J Mat Eng Perf 19: 1065-1070.
[۱۸] میراسماعیلی س‌م، رضایی‌زاده سیبنی ظ (1391) بررسی تأثیر ناخالصی آهن بر ریزساختار و رفتار خزش فرو روندگی سوپرآلیاژ ریختگی Al-Ni -Mn –Mg. اولین همایش بین المللی و ششمین همایش مشترک انجمن مهندسی متالورژی ایران، تهران.
[۱۹] طاهری م، سالمی گلعذانی ع، شیروانی ک (1391) تأثیر پوشش آلومینایدی بر رفتار خزشی سوپرآلیاژ پایه نیکلیGTD-111 . مواد نوین 68-61 :(7)3.
[۲۰] آزادی م، رضانژاد س (1394) ارایه مدل تخمین عمر خزش برای سوپرآلیاژ مورد استفاده در پره توربین قطعه توربوشارژ. نهمین همایش بین المللی موتورهای درونسوز، تهران.
]21[ کلاگر ع‌م، چراغ‌زاده م، تبریزی ن، شهریاری م‌س (1395) تأثیر شرایط کاری بر ریزساختار و    مکانیزم‌های تغییر فرم خزشی پره‌های توربین گاز از جنس سوپرآلیاژ پایه نیکل IN738LC. مهندسی متالورژی 160-146 :(2)19.
[۲۲] سلیمانی س (1396) بررسی تغییر شکل خزشی ابرآلیاژهای تک‌کریستالی پایه نیکل با استفاده از پلاستیسیته­ی نابجایی­های گسسته. مجله مهندسی مکانیک مدرس 179-171 :(7)17.
[۲۳] هانیه آرو و محمد آزادی (۱۳۹۸) مدلسازی رفتار خزشی در آلیاژ آلومینیوم، سلیسیوم، مس، نیکل، منیزیم در دماها و سطوح تنش مختلف. نشریه علمی مکانیک سازه­ها و شاره‌ها 76-61 :(2)9.
[24] ASTM standard (1998) Test method for tension testing of metallic material, E8: 62.
[25] Technical data sheet (2017) IPAL Diffusion Coating, IP1041.
[26] Test method for conducting creep (2018) Creep-rupture, and stress-rupture test of metallic materials. ASTM-E139 Standard.
[27] Air Force technical publication, T.O. 2J-J85-66, C50TF28, T.O.2j.j79-53 5-55.