Enhancing the performance of Bi-stable Energy Harvester using Chaos control

Authors

1 Ph.D. Student, Faculty of Mechanical and Energy Engineering, Shahid Beheshti Univ., Tehran, Iran

2 M.Sc. Student, Faculty of Mechanical and Energy Engineering, Shahid Beheshti Univ., Tehran, Iran

3 Assistant Professor, Faculty of Mechanical and Energy Engineering, Shahid Beheshti Univ., Tehran, Iran

4 Renewable Energies Department, Mechanical and Energy Systems Engineering Faculty, Shahid Beheshti University, Tehran, Iran.

Abstract

Chaotic behavior in bi-stable energy harvesters severely reduces the harvested energy. Besides reducing the energy extracted, this behavior makes the interface circuits' design and production complicated and costly. In this study, chaos control in bi-stable energy harvesters has been investigated. A controller with delayed feedback control has been added to the bi-stable energy harvester to eliminate chaos. Then, the stability range of the control gain is calculated by using the Poincare section. Also, the effect of the main harvesting parameters on the control system stability has been studied. The controlled bi-stable energy harvester's numerical simulation response shows that chaotic behavior is well converted to periodic behavior by the controller. The energy balance diagram shows that the controlled harvester can recover the consumed energy in the actuator in a relatively short time. A bi-stable energy harvester with a chaotic controller has improved in energy and output power compared to a bi-stable harvester without a controller. Changing the control gain, the cross-time in which the harvested energy of the controlled harvester passes the harvested energy by the uncontrolled one is optimized to its minimum possible amount.

Keywords


[1]  Wang J, Geng L, Ding L, Zhu H, Yurchenko D (2020) The state-of-the-art review on energy harvesting from flow-induced vibrations. Appl Energy 267(1): 114902.
[2] مامندی ا، جعفری ی (1400) بررسی بازدهی برداشت انرژی ارتعاشی تیر پیزوالکتریک با استفاده از روش اجزای محدود. مجله مهندسی مکانیک دانشگاه تبریز 218-208 :(1)51.
[3]  Dell’Anna F, Dong T, Li P, Wen Y, Yang Z, Casu MR, Azadmehr M, Berg Y. (2018) State-of-the-art power management circuits for piezoelectric energy harvesters. IEEE Circuits Syst Mag 18(3): 27-48.
[4]  Salazar R, Serrano M, Abdelkefi A (2020)    Fatigue in piezoelectric ceramic vibrational   energy harvesting: A review. Appl Energy 270(4): 115161.
[5]  Gholikhani M, Roshani H, Dessouky S, Papagiannakis AT. (2020) A critical review of roadway energy harvesting technologies. Appl Energy 261(7): 114388.
[6]  Rafiqu S (2018) Piezoelectric vibration energy harvesting. Modeling & Experiments. Springer.
[7] سلمانی ح، رحیمی غ (1397) بررسی اثر تغییرات نمایی سطح مقطع بر ولتاژ خروجی برداشت کننده انرژی پیزوالکتریک با غیرخطینگی هندسی، اینرسی، ماده و میرایی مجله مهندسی مکانیک مدرس 442-434 :(2)18.
[8] معین‌فرد ح، خادم باشی م (1396) مدلسازی برداشت انرژی الکتریکی با استفاده از مواد پیزوالکتریک تحت تحریک اتفاقی از پایه. نشریه علمی مکانیک سازه‌ها و شاره‌ها 10-1 :(1)6.
[9]  Hosseini R, Hamedi M (2015) Improvements in energy harvesting capabilities by using different shapes of piezoelectric bimorphs. J Micromech Microeng 25(12): 125008.
[10] Selvan K, Mohamed Ali M (2016) Micro-scale energy harvesting devices: Review of methodological performances in the last decade. Renew Sustain Energy Rev 54(2016): 1035-1047.
[11] Deng Q, Kammoun M, Erturk A, Sharma P. (2014) Nanoscale flexoelectric energy harvesting. Int J Solids Struct 51(18):3218-3225.
[12] Petrini F, Giaralis A, Wang Z (2019) Optimal tuned mass-damper-inerter (TMDI) design in wind-excited tall buildings for occupants comfort serviceability performance and energy harvesting. Eng. Struct. 204(11): 109904.
[13] Tran N, Ghayesh M, Arjomandi M (2018)  Ambient vibration energy harvesters: A review on nonlinear techniques for performance enhancement. Int J Eng Sci 127(5): 162-185.
[14] حسینی مقدم س، لطافتی م­ح، حسینی ر (1396) برداشت انرژی ارتعاشی با استفاده از تیر یک سردرگیر با دو لایه پیزوالکتریک. نشریه علمی مکانیک سازه‌ها و شاره‌ها 9-1 :(1)7.
[15] Joo HK, Sapsis TP (2014) Performance measures for single-degree-of-freedom energy harvesters under stochastic excitation. J Sound Vib 333(19): 4695-4710.
[16] Haji Hosseinloo A, Turitsyn K. (2017)  Effective kinetic energy harvesting via structural instabilities. Act Passiv Smart Struct Integr Syst 10164(617): 101641G.
[17] Yildirim T, Ghayesh M, Li W, Alici G. (2017) A review on performance enhancement techniques for ambient vibration energy harvesters. Renew. Sustain. Energy Rev 71(4): 435-449.
[18] Daqaq M, Masana R, Erturk A, Dane Quinn D (2014) On the Role of Nonlinearities in Vibratory Energy Harvesting: A Critical Review and Discussion. App Mech Rev 66(4): 040801.
[19] McInnes C, Gorman D, Cartmell M (2008) Enhanced vibrational energy harvesting using nonlinear stochastic resonance. J Sound Vib 318(4-5): 655-662.
[20] Cottone F, Vocca H, Gammaitoni L. (2009) Nonlinear Energy Harvesting. Am. Phys. Soc. 102(8):080601.
[21] Harne R, Wang K. (2013) A review of the recent research on vibration energy harvesting via bistable systems. Smart Mater Struct 22(2): 023001.
[22] Daqaq M, Crespo R, Ha S. (2020) On the efficacy of charging a battery using a chaotic energy harvester. Nonlinear Dyn 99(2): 1525-1537.
[23] Kumar A, Ali S, Arockiarajan A. (2016) Enhanced energy harvesting from nonlinear oscillators via chaos control. IFAC-PapersOnline 49(1): 35-40.
[24] Ott E, Grebogi C, Yorke J (1990) Controlling chaos. Phys Rev Lett 64(11): 1196-1199.
[25] Huynh B, Tjahjowidodo T, Zhong ZW, Wang Y, Srikanth N (2018) Design and experiment of controlled bistable vortex induced vibration energy harvesting systems operating in chaotic regions. Mech Syst Signal Process 98(1): 1097-1115.
[26] Schuster H, Parlitz U, Kocarev L (2008) Handbook of Chaos Control. Wiley-VCH Verlag GmbH & Co .KGaA.
[27] Masana R, Daqaq M (2011) Relative performance of a vibratory energy harvester in mono- and bi-stable potentials. J Sound Vib 21(10): 6036-6052.
[28] Xu C, Liang Z, Ren B, Di W, Luo H, Wang D, Wang K, Chen Z (2013) Bi-stable energy harvesting based on a simply supported piezoelectric buckled beam. J Appl Phys 114(11): 4507.
[29] Erturk A, Hoffmann J, Inman D. (2009) A piezomagnetoelastic structure for broadband vibration energy harvesting. Appl Phys 94(25): 4102.
[30] Panyam M, Masana R, Daqaq MF. (2014) On approximating the effective bandwidth of bi-stable energy harvesters. Int J Non Linear Mech 67(12): 153-163.
[31] Pyragas K (1992) Continuous control of chaos by self-controlling feedback. Phys. Lett. Sect. A Gen At Solid State Phys 170(6): 421-428.
[32] Fradkov A, Evans R. (2005) Control of chaos: Methods and applications in engineering. Annu Rev Control 29(1): 33-56.
[33] Pyragas K. (2006) Delayed feedback control of chaos. Philos. Trans R Soc A Math Phys Eng 364(1846): 2309-2334.
[34] Kittel A, Parisi J, Pyragas K (1995) Delayed feedback control of chaos by self-adapted delay time. Phys Lett 198(5-6): 433-436.
[35] Gani A, Salami M, Khan M (2003) Active vibration control of a beam with piezoelectric patches: Real-time implementation with xPC target. IEEE Conference on Control Applications - Proceedings 1(10): 538-544.
[36] Rahman N, Alam M (2012) Active vibration control of a piezoelectric beam using PID controller: Experimental study. Latin American J Solid Structures 9(4): 657-673.
[37] Yousefpour A, Haji Hosseinloo A, Hairi Yazdi M, Bahrami A (2020) Disturbance observer–based terminal sliding mode control for effective performance of a nonlinear vibration energy harvester. J Intell Mater Syst Struct 31(12): 1495-1510.
[38] Park J, Kwon O (2005) A novel criterion for delayed feedback control of time-delay chaotic systems. Chaos, Solitons & Fractals 23(2): 495-501.