Free Vibration Analysis of Carbon Nanotube Grid Composite Cylindrical Shell with First-Order Shear Deformation Theory

Authors

1 M.Sc., Mechanical Engineering, Malek Ashtar University of Technology, Tehran, Iran.

2 Assistant Professor, University Complex of Materials and Manufacturing Technology, Malek Ashtar University of Technology, Tehran, Iran.

3 Professor, Mechanical Engineering, Composite Engineering Research Institute, Malek Ashtar University of Technology, Tehran, Iran.

4 PhD student, Mechanical Engineering, Malek Ashtar University of Technology, Tehran, Iran.

Abstract

In this paper, the free vibrations of a composite cylindrical grid shell reinforced with carbon nanotubes are investigated. Equilibrium equations are derived based on first-order shear deformation theory. The orientation of carbon nanotubes is assumed to be uniaxial in the direction of the assumed thickness and the elastic modulus of the polymer composite reinforced with carbon nanotubes is calculated using the Rule of mixture. In order to achieve the stiffness parameter equivalent to the shell of grid cylinders, Smeared method has been used to suppress the effect of ribs. Abaqus software and valid references have been used to validate the obtained results. According to the results, the presence of peripheral ribs in the structure increases the frequency and reduces the radial displacement. Also, the thickness and angles of the ribs are important in improving the frequency and the presence of carbon nanotubes plays an important role in strengthening the structure and Increases the frequency and decreases the radial displacement due to the applied load.

Keywords


[1] Ugural AC (1999) Stress in plate and shells. 2 edn.
[2] Edvard V (2001) Thin Plate and Shells.
[3] Engines E. EJ200 turbofan engine.
[4] Mackay R (1986) Wellington in action. Squadron/Signal.
[5] Egle D, Sewall J (1968) An analysis of free vibration of orthogonally stiffened cylindrical shells with stiffeners treated as discrete elements. AIAA J 6(3): 518-526.
[6] Jiang J, Olson M (1994) Vibration analysis of orthogonally stiffened cylindrical shells using super finite elements. J Sound Vib 173(1): 73-83.
[7]  Luan Y, Ohlrich M, Jacobsen F (2011) Improvements of the smearing technique for cross-stiffened thin rectangular plates. J Sound Vib 330(17): 4274-4286.
[8]  Edalata P, Khedmati MR, Soares CG (2013) Free vibration and dynamic response analysis of stiffened parabolic shells using equivalent orthotropic shell parameters. Latin American Int J Solids Struct.
[9] لطیفی رستمی س­ع، آلاشتی ر، رحیمی غ­ح (1390) آنالیز المان محدود و اعتبارسنجی آزمایشگاهی تأثیر نقص ریب در سازه‌های مشبک کامپوزیتی استوانه‌ای. دوازدهمین کنفرانس ملی مهندسی ساخت و تولید ایران.
[10] رحیمی غ­ح، دانشفر ا (1389) بررسی تاثیرگشودگی مربع مستطیل و ضریب منظر آن بر مقاومت کمانش پوسته استوانه ای مشبک کامپوزیتی.
[11] رسولی رحیمی غ­ح (1389) بررسی تاثیرگشودگی مربع مستطیل و ضریب منظر آن بر مقاومت کمانش پوسته استوانه ای مشبک کامپوزیتی. دهمین همایش انجمن هوافضای ایران انجمن هوافضای ایران.
[12] Akbari Alashti SALRr,  Rahimi GH (1392) Buckling analysis of composite lattice cylindrical shells with ribs defect. International Journal of Engineering.
[13] نورآبادی م، تقویان س (1390) طراحی ساختار مشبک مخروطی با بافت سلولی غیر هم شکل. دومین کنفرانس بین المللی کامپوزیت.
[14] اسکندری جم م، نورآبادی تقویان س (1390) طراحی ساختار مشبک مخروطی با بافت سلولی غیر هم شکل.
[15] یوسف زاده م، اسکندری جم ج (1388) تعیین ماتریس سختی استوانه‌ای کامپوزیتی مشبک تحت بار محوری. هشتمین همایش انجمن هوافضای ایران.
[16] اسکندری جم ج، ناطقی ح (1390) تحلیل کمانش صفحات ساندویچی با هسته مشبک تحت بار محوری و فشار یکنواخت روی صفحه. سیزدهمین همایش ملی صنایع دریایی ایران انجمن مهندسی دریایی ایران.
[17] Moradi-Dastjerdi R, Aghadavoudi F (2018) Static analysis of functionally graded nanocomposite sandwich plates reinforced by defected CNT. Compos Struct 200. 839-848
[18] یوگورال اس (1375) تنش در ورق­ها و پوسته­ها.
[19] Sharma CB (1973) Frequencies of clamped-free circular cylindrical shell. J Sound Vib 525-528.
[20] Shen HS (2011) Postbuckling of nanotube-reinforced composite cylindrical shells in thermal environments, Part I: Axially-loaded shells. Compos Struct 93(8): 2096-2108.
[21] Arasteh R, Omidi M, Rousta AHA, Kazerooni (2011) A study on effect of waviness on mechanical properties of multi-walled carbon nanotube epoxy composites using modified Halpin–Tsai theory. J Macromolecular Sci Part: B Physics.
[22] Shen HS (2011) Postbuckling of nanotube-reinforced composite cylindrical shells in thermal environments. Compos Struct 2096-2108.
[23] Lee YS, Lee KD (1997) On the dynamic response of laminated circular cylindrical shells under impulse loads. Comput Struct 63(1): 149-157.
[24] Hemmatnezhad M, Rahimi G,  Ansari N (2014) On the free vibrations of grid-stiffened composite cylindrical shells. Acta Mechanica 225(2): 609.
[25] Kidane S, Li G, Helms J, Pang SS, Woldesenbet E (2003) Buckling load analysis of grid stiffened composite cylinders. Compos Part B-Eng 34(1): 1-9.
[26] زارعی م، رحیمی غ (1395) تحلیل ارتعاشات آزاد پوسته های استوانه‌ای کامپوزیتی مشبک دوار. مهندسی مکانیک مدرس.
[27] Lam KY, Loy CT (1995) Influence of boundary conditions and fiber orientation and the natural frequencies of thin orthotropic laminated cylindrical shells. Compos Struct 21-30.
[28] Khalili S, Malekzadeh K, Davar A, Mahajan P, (2010) Dynamic response of pre-stressed fibre metal laminate (FML) circular cylindrical shells subjected to lateral pressure pulse loads. Compos Struct 92(6): 1308-1317.
[29] Lam KY, Loy CT (1998) Influence of boundary conditions for a thin laminated rotating cylindrical shell. Compos Struct 215-228.