Designing of a High Sensitivity Graphene Mass Sensor for Measuring Different Mass Distributions Based on Nonlinear Frequency Shift

Authors

School of Mechanical Engineering, Shiraz University, Shiraz, Iran

Abstract

Graphene Sheets are used in this paper to design a high-sensitivity mass sensor. For this purpose, the nonlinear vibrations of carbon nanoplates on the Winkler and Pasternak foundation are investigated for use as a mass sensor. Kirchhoff's nonlocal plate theory is used to model the sensor's nanoplate, and the effect of concentrated masses on the arbitrary points of the plate is considered, then the Galerkin method is used to transform the partial governing equation into the ordinary differential equation. Next, the nonlinear frequency response of the system is obtained by the series method with multiple time scales. The nonlocal parameter that plays an important role in the behavior of the nano system is determined by comparing the results with other studies, and the natural frequency of the carbon nanoplate is verified with the molecular dynamic results. The dimensions of the nanoplate and the characteristics of the foundation used are such that the designed sensor is capable of detecting a single mass in the nanoplate center with five zeptograms. This ability to detect in different mass configurations has also been investigated and compared.

Keywords


[1] Vvedensky DD (2004) Multiscale modelling of nanostructures. J Phys Condens Matter 16(50): 1538-1569.
[2] Liu WK, Karpov EG, Park HS (2006) Nano Mechanics and Materials. John Wiley & Sons, Ltd: Chichester, UK .
[3] Rappe A, Casewit C (1997) Molecular mechanics across chemistry. Choice Rev. Online 35(02): 35-0914-35-0914.
[4] Rafii-Tabar H, Ghavanloo E, Fazelzadeh SA (2016) Nonlocal continuum-based modeling of mechanical characteristics of nanoscopic structures. Phys Rep 638: 1-97.
[5] Liu H, Lyu Z (2020) Modeling of novel nanoscale mass sensor made of smart FG magneto-electro-elastic nanofilm integrated with graphene layers. Thin-Walled Struct 151: 106749.
[6] Mahata C, Algadi H, Lee J, Kim S, Lee T (2020) Biomimetic-inspired micro-nano hierarchical structures for capacitive pressure sensor applications. Meas J Int Meas Confed 151: 107095.
[7] El-Shafai NM et al. (2020) Magnetite nano-spherical quantum dots decorated graphene oxide nano sheet (GO@Fe3O4): Electrochemical properties and applications for removal heavy metals, pesticide and solar cell. Appl Surf Sci 506: 144896.
[8] Rana S et al. (2020) Nanoelectromechanical relay without pull-in instability for high-temperature non-volatile memory. Nat Commun. 11(1): 1-10.
[9] گلمکانی م، ضیغمی و (2015) تحلیل خمش صفحات کامپوزیتی تقویت شده با توزیع تابعی نانولوله‌های کربنی به روش آزادسازی دینامیکی. مجله مکانیک سازه­ها و شاره­ها 133-115 :(1)5.  
[10] Sagar GH, Arunagirinathan MA, Bellare JR (2007) Self-assembled surfactant nano-structures important in drug delivery: A review. Indian J Exp Biol 45(2): 133-159.
[11] Nair S (2012) Introduction to continuum mechanics. Cambridge University Press: Cambridge .
[12] Eringen AC, Edelen DGB (1972) On nonlocal elasticity. Int J Eng Sci 10(3): 233-248.
[13] Shajari S, Mahmoodi M, Rajabian M, Karan K, Sundararaj U, Sudak LJ (2020) Highly sensitive and stretchable carbon nanotube/fluoroelastomer nanocomposite with a double-percolated network for wearable electronics. Adv Electron Mater 6(2): 1901067.
[14] Requicha AAG (2003) Nanorobots, NEMS, and nanoassembly. Proc. IEEE 91(11): 1922-1933.
[15] تقی زاده انور ع، کنعانی م، محمدی ح (1398) نانولوله کربنی به عنوان حسگر حساس گازی برای تشخیص گاز در فشارهای پایین. هشتمین کنفرانس و نمایشگاه بین المللی مهندسی مواد و متالورژی و سیزدهمین همایش ملی مشترک انجمن مهندسی متالورژی و مواد ایران و انجمن ریخته گری ایران.
[16] Chen Y, Zhang HB, Yang Y, Wang M, Cao A, Yu ZZ (2016) High-performance epoxy nanocomposites reinforced with three-dimensional carbon nanotube sponge for electromagnetic interference shielding. Adv Funct Mater 26(3): 447-455.
[17] Luo M, Feng Y, Wang T, Guan J (2018) Micro-/nanorobots at work in active drug delivery. Adv Funct Mater 28(25): 1706100.
[18] Fu Y, Ma Q (2020) Recent developments in electrochemiluminescence nanosensors for cancer diagnosis applications. Nanoscale.
[19] Park SJ et al. (2020) Discovery of direct-acting antiviral agents with a graphene-based fluorescent nanosensor. Sci Adv 6(22): eaaz8201.
[20] Li R et al. (2012) Ionic liquid precursor-based synthesis of CuO nanoplates for gas sensing and amperometric sensing applications. Sensors Actuators, B Chem. 168 156–164.
[21] Zhang Y, Chang G, Liu S, Lu W, Tian J, Sun X (2011) A new preparation of Au nanoplates and their application for glucose sensing. Biosens Bioelectron 28(1): 344-348.
[22] Giannopoulos GI (2014) Fullerenes as mass sensors: A numerical investigation. Phys. E Low-Dimensional Syst. Nanostructures 56: 36-42.
[23] Wu W, Palaniapan M, Wong WK (2008) Multiwall carbon nanotube resonator for ultra-sensitive mass detection. Electron Lett 44(18): 1060-1061.
[24] Volodin A, Buntinx D, Ahlskog M, Fonseca A, Nagy JB, Van Haesendonck C (2004) Coiled carbon nanotubes as self-sensing mechanical resonators. Nano Lett 4(9): 1775-1779.
[25] Chiu HY, Hung P, Postma HWC, Bockrath M (2008) Atomic-scale mass sensing using carbon nanotube resonators. Nano Lett 8(12): 4342-4346.
[26] Shen Z Bin, Tang HL, Li DK, Tang GJ (2012) Vibration of single-layered graphene sheet-based nanomechanical sensor via nonlocal Kirchhoff plate theory. Comput Mater Sci 61: 200-205.
[27] Sakhaee-Pour A, Ahmadian MT, Vafai A (2008) Applications of single-layered graphene sheets as mass sensors and atomistic dust detectors. Solid State Commun 145(4): 168-172.
[28] Lee HL, Yang YC, Chang WJ (2013) Mass detection using a graphene-based nanomechanical resonator. Jpn J Appl Phys 52(2).
[29] Natsuki T, Shi JX, Ni QQ (2013) Vibration analysis of nanomechanical mass sensor using double-layered graphene sheets resonators. J Appl Phys 114(9): 094307.
[30] Li XF, Tang GJ, Shen Z Bin, Lee KY (2015) Resonance frequency and mass identification of zeptogram-scale nanosensor based on the nonlocal beam theory. Ultrasonics 55(1): 75-84.
[31] Fakher M, Rahmanian S, Hosseini-Hashemi S (2019) On the carbon nanotube mass nanosensor by integral form of nonlocal elasticity. Int J Mech Sci 150: 445-457.
[32] Arda M, Aydogdu M (2020) Vibration analysis of carbon nanotube mass sensors considering both inertia and stiffness of the detected mass. Mech Based Des Struct Mach 1-17.
[33] کریم پور م، قادری ر (1395) تجزیه و تحلیل ارتعاشی نانو حسگر جرمی به روش المان محدود. اولین کنفرانس ملی مهندسی مکانیک و مکاترونیک ایران.
[34] Yin XB, Kumar S, Kumar D (2015) A modified homotopy analysis method for solution of fractional wave equations. Adv Mech Eng 7(12): 168781401562033.
[35] Younesian D, Askari H, Saadatnia Z, KalamiYazdi M (2010) Frequency analysis of strongly nonlinear generalized Duffing oscillators using He’s frequency-amplitude formulation and He’s energy balance method. Comput Math with Appl 59(9): 3222-3228.
[36] Askari H, Esmailzadeh E, Zhang D (2014) Nonlinear vibration analysis of nonlocal nanowires. Compos Part B Eng 67: 607-613.
[37] Nayfeh AH, Mook DT (2004) Nonlinear oscillations. Wiley-VCH.
[38] Dai MD, Eom K, Kim CW (2009) Nanomechanical mass detection using nonlinear oscillations. Appl Phys Lett 95(20): 203104.
[39] Cho H, Yu MF, Vakakis AF, Bergman LA, McFarland DM (2010) Tunable, broadband nonlinear nanomechanical resonator. Nano Lett 10(5): 1793-1798.
[40] Askari H, Jamshidifar H, Fidan B (2017) High resolution mass identification using nonlinear vibrations of nanoplates. Meas J Int Meas Confed 101: 166-174.
[41] Jabbari Behrouz S, Rahmani O, Hosseini SA (2019) On nonlinear forced vibration of nano cantilever-based biosensor via couple stress theory. Mech Syst Signal Process 128: 19-36.
[42] Eringen AC (2002) Nonlocal continuum field theories. Springer.
[43] Eringen AC (1983) On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J Appl Phys 54(9): 4703-4710.
[44] Ansari R, Sahmani S, Arash B (2010) Nonlocal plate model for free vibrations of single-layered graphene sheets. Phys. Lett Sect A Gen At Solid State Phys 375(1): 53-62.