Numerical investigation of temperature field and laminar flame structure of inclined impinging jets of methane and hydrogen

Authors

1 School of Mechanical Engineering, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran, Iran

2 School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran

Abstract

Nowadays, premixed flames are broadly utilized in various residential/industrial applications. Therefore, simultaneously increasing the quality of combustion and reducing the pollution of these flames is of great importance. In this study, collisions of two flame jets of H2/CH4 have been simulated; and flame structure, temperature, and NOx emission are reported at different conditions. The main purpose of this work was to study the effect of angle between the burners and the effect of air and fuel preheating on the key design factors of impinging jets. It was observed that by increasing the angle between two burners, mixing and recirculating flow is enlarged, and the maximum flame temperature and NOx production is increased accordingly. By increasing the angle from 0 to 180 degrees, the maximum flame temperature of methane and hydrogen increases by 11.5 and 12.4%, respectively. Preheating showed that with 400 K increase in the fuel and inlet air temperature, the maximum flame temperature for methane and hydrogen increases 6% and 4%, respectively, which eventually results in a higher NOx.

Keywords


[1]  Lombardi L, Carnevale E, Corti A (2006) Greenhouse effect reduction and energy recovery from waste landfill. Energy 31(15): 3208–3219.
[2] Bâ A, Cessou A, Marcano N, Panier F, Tsiava R, Cassarino G, Ferrand L, Honoré D (2019) Oxyfuel combustion and reactants preheating to enhance turbulent flame stabilization of low calorific blast furnace gas. Fuel 242: 211-221.
[3] Ouyang Z, Liu W, Man C, Zhu J, Liu J (2018) Experimental study on combustion, flame and NOX emission of pulverized coal preheated by a preheating burner. Fuel Process Technol 179: 197-202.
[4] Irandoost MS, Ashjaee M, Askari MH, Ahmadi S (2015) Temperature measurement of axisymmetric partially premixed methane/air flame in a co-annular burner using Mach–Zehnder interferometry. Opt Lasers Eng 74: 94-102.
[5] Dong LL, Cheung CS, Leung CW (2002) Heat transfer from an impinging premixed butane/air slot flame jet. Int J Heat Mass Transfer 45(5): 979-992.
[6] Dong LL, Cheung CS, Leung CW (2001) Heat transfer characteristics of an impinging butane/air flame jet of low Reynolds number. Exp Heat Transfer 14(4): 265-282.
[7] Wu J, Seyed–Yagoobi J, Page RH (2001) Heat transfer and combustion characteristics of an array of radial jet reattachment flames. Combust Flame 125(1-2): 955-964.
[8] Kwok LC, Leung CW, Cheung CS (2005) Heat transfer characteristics of an array of impinging pre-mixed slot flame jets. Int J Heat Mass Transfer 48(9): 1727-1738.
[9] Shih HY, Hsu JR, Lin YH (2014) Computed flammability limits of opposed-jet H2/CO syngas diffusion flames. Int J Hydrogen Energy 39(7): 3459-3468.
[10] Li CC, Chen JW, Yang JT (2012) Stabilization of double flames interacting with the intersecting flow on a V-shaped burner. Combust Sci Technol 184(12): 2117-2135.
[11] Kiani M, Houshfar E, Niaraki Asli AE, Ashjaee M (2017) Combustion of syngas in intersecting burners using the interferometry method. Energy Fuels 31(9): 10121-10132.
[12] جلیلی مهر م، مقیمان م، نیازمند ح (1396) مطالعه اثر پیش گرمایش سوخت گاز طبیعی بر تشکیل دوده، درخشندگی شعله و انتشار NO به روش عددی و آزمایشگاهی. مجله مکانیک سازه‌ها و شاره‌ها 90-79 :(1)7.
[13] Datta A, Saha A. Contributions of self-absorption and soot on radiation heat transfer in a laminar methane—air diffusion flame. Proc Inst Mech Eng A 221(7): 955-970.
[14] DuPont V, Pourkashanian M, Williams A (1993) Modelling process heaters fired by natural gas. J Inst Energy 66: 20-38.
[15] کیانی م، امیری پ، اسماعیل پور ک (1396) بررسی میدان دما و ساختار شعله آرام جت‌های برخوردی مایل گاز لندفیل با استفاده از روش تجربی اینترفرومتری ماخ-زندر. مهندسی مکانیک مدرس 240-233 :(6)7.
[16] De Soete GG (1975) Overall reaction rates of NO and N2 formation from fuel nitrogen. Symp (Int) Combust 15(1): 1093-1102.
[17] Mandal BK, Sarkar A, Datta A (2006) Numerical prediction of the soot and NO formation in a confined laminar diffusion flame without and with air preheat. Proc Inst Mech Eng A 220(5): 473-486.
[18] Lock A, Briones AM, Aggarwal SK, Puri IK, Hegde U (2007) Liftoff and extinction characteristics of fuel-and air-stream-diluted methane–air flames. Combust Flame 149(4): 340-352.
[19] Kiani M, Houshfar E, Ashjaee M (2019) Experimental investigations on the flame structure and temperature field of landfill gas in impinging slot burners. Energy 170: 507-520.
[20] Chen JW, Chiu CP, Mo SH, Yang JT (2015) Combustion characteristics of premixed propane flame with added H2 and CO on a V-shaped impinging burner. Int J Hydrogen Energy 40(2): 1244-1255.
[21] Kiani M, Houshfar E, Ashjaee M (2018) An experimental and numerical study on the combustion and flame characteristics of hydrogen in intersecting slot burners. Int J Hydrogen Energy 43(5): 3034-3049.
[22] Hosseini SE, Bagheri G, Wahid MA (2014) Numerical investigation of biogas flameless combustion. Energy Convers Manage 81: 41-50.
[23] ANSYS Fluent Tutorial Guide (2018) Modeling species transport and gaseous combustion.
[24] Hosseini SE, Wahid MA, Abuelnuor AA (2012) High temperature air combustion: Sustainable technology to low NOx formation. Int Rev Mech Eng 6(5): 947-953.