Control a class of fractional-order systems with delay in a specified sector

Authors

1 Ph.D. Student, Math. Sci., Shahrood Univ., Shahrood, Iran.

2 Assoc. Prof., Math. Sci., Shahrood Univ., Shahrood, Iran.

3 Full. Prof., Math. Sci., Alzahra Univ., Tehran, Iran.

Abstract

This paper is concerned with the problem of designing fractional-order time-delay systems with closed-loop eigenvalues in a prescribed region of stability.
The main idea is to convert the fractional-order systems with time-delays into an equivalent standard fractional-order systems without delays. At the first, we compute a state feedback matrix which assigns all the eigenvalues to zero, then by using the method based on similarity transformation and assign the eigenvalues to fractional-order systems without delays compute state feedback matrix in a sector of the complex plane. This method is achieved by implementing properties of vector companion forms.
The proposed algorithm can be used for the placement of closed-loop eigenvalues in a specified sector in plane and can be employed for fractional-order linear systems with large-scale. Also, the considerations can be easily extended for two-dimensional (2D) and descriptor fractional-order systems. Also, simulation results are presented to demonstrate the effectiveness of the proposed method.

Keywords

Main Subjects


[1] Dzielinski A‎, ‎Sierociuk‎ D, ‎Sarwas G ‎‎ (2010) ‎Some applications of fractional-order calculus‎.‎ Bull‎ Pol Ac ‎Tech 58(4)‎: ‎583-592‎.‎
[2] ‎ Rihan FA, Hashish A (2016) Dynamics of tumor-immune system with fractional-order. Tumor Res 2(1).
[3]‎ Pakzad‎ MA, ‎Nekoui MA, ‎Pakzad‎ S (2013) ‎Stability analysis of time-delayed‎ ‎linear fractional-order systems‎. Int J Control Autom 11(3): 519-525‎.
[4] ‎‎‎‎‎‎ Rihan FA, Lakshmanan S, et al. (2018) Fractional-order delayed predator-prey systems with Holling type-II functional response. Nonlinear Dyn (Doi:10.1007/s11071-015-1905-8).‎
[5]‎ Li y (2018)  Stabilization of teleoperation systems with communication delays: An IMC approach. J  Robot (http://dx.doi.org/10.1155/2018/1018086).
[6]‎ Fateh MM, Baluchzadeh M (2012) Optimal discrete-time control of robot manipulators in repetitive tasks. Journal of Solid and Fluid Mechanics 2(3): 35-44.
[7]‎ Friedman E (2014) Introduction to time-delay systems: Analysis and control. New York, Springer.
[8] ‎Matignon‎ D (1996) ‎Stability results on fractional diessential equations to control‎ ‎processing‎. ‎Computational Engineering in Systems and Application‎ ‎Multiconference‎ ‎2: 963-968‎.‎
[9] Liu S, Jiang W, Li X, Zhou XF (2015) Lyapunov stability analysis of fractional nonlinear systems. Appl Math Lett (DoI: 10.1016/j.aml.2015.06.018).
[10]‎ Hu JB, Lu GP, Zhang SB, Zhao LD (2014) Lyapunov stability theorem about fractional system without and with delay. ‎Commun Nonlinear Sci doi:10.1016/j.cnsns.2014.05.013.
[11] Zhang H, et al. (2018) Lyapunov functional approach to stability analysis of Riman-Liouville fractional neural networks with time-varying delays. Asian J Control 20(6): 114-120.
[12] Naifar O, Nagy AM, Ben Makhlouf A, Kharrat M and Hammami MA (2018) Finite-time stability of linear fractional-order time-delay systems. Int J Robust Nonlinear Control 1-8.
[13]‎ Ammour A, ‎Djennoune ‎ D, ‎‎Bettayeb‎ M (2016) ‎ Stabilization of fractional-order‎ ‎linear systems with state and input delay. Asian J Control 18(1): 1-9‎. ‎
[14]‎ Yousefi M, Binazadeh T (2016) Delay-independent sliding mode control of time-delay linear fractional order systems. T I Meas Control 1-12.
[15] Pakzad‎, ‎MA,‎‎ Nekoui‎ ‎MA‎ (2014) ‎Stability map of multiple time-delayed fractional-order systems. Int J Control Autom 12(1)‎: ‎37-43‎.‎
[16] ‎Furuta‎ T, ‎Kim SB (1987) ‎Pole assignment in a specified disk‎. ‎IEEE T Automat Contr ‎32: 423-427‎.
[17] Chou JH (1991) Pole assignment robustness in a specified disk. Syst Control 16: 41-44.
[18]‎ Figueroa‎ JL, ‎Romagnoli‎ JA (1994) ‎An algorithm for robust pole assignment‎ ‎via polynomial approach‎. ‎IEEE T Automat Contr ‎3: 831‎- ‎835‎.
[19] Yuan, L, Achenie LEK, Jiang W (1996) Linear quadratic optimal output feedback control for systems with poles in a specified region. Int J Control 64: 1151- 1164.
[20] Benner P, Castillo M, Quintanaorti MS (2001) Partial stabilization of large-scale discrete-time linear control systems. Technical Report, University of Bremen, Germany.
[21] Tehrani HA (2008) Assignment of eigenvalues in a disc D (c, r) of Complex plane with application of the gerschgorin theorem. World Appl Sci J 5 (5): 576-581.
[22] Ahsani Tehrani H  (2013) Stabilization of dynamic systems by localization of eigevalues in a specified Interval. J Math Comput Sci 7: 144-153.
[23] Ayatollahi M (2013) Maximal and minimal eigenvalue assignment for discrete-time periodic systems by state feedback. Optim Lett 7: 1119-1123.
[24] ‎Franke M (2014) Eigenvalue assignment by static output feedback on a new solvability condition and the computation of low gain feedback matrices. Int J Control 87: 64-75.
[25] Liu M, Jing Y and Zhang S (2004) Regional pole assignment for uncertain delta-operator systems. J Control Theory Appl 4: 406-410.
[26] Grammont ‎ L, ‎Largila A (2006) ‎Krylov method revisited with an application‎ ‎to the localization of eigenvalues‎. ‎Numer Func Anal Opt ‎27: 583-618‎.‎‎
[27] Ahsani Tehrani H (2014) Localization of eigenvalues in small specified regions of complex plane by state feedback matrix. Journal of Sciences, Islamic Republic of Iran 25(2): 157-164.
[28] Monje CA, ‎et al. (2010) ‎Fractional-order    systems and controls fundamentals‎ ‎and applications. ‎Springer‎, ‎London‎.
[29] Kaczorek‎ T (2011) Selected problems of fractional systems theory. springer-verlag berlin heidelberg. doi: 10.1007/978-3-642-20502-6.
[30] Kaczorek‎ T (2010) ‎Stabilization of fractional positive continuous-time linear‎ ‎systems with delays in sectors of left half complex plane by state-feedbacks‎. Control Cybern ‎ ‎39 (3): 783-795‎.‎
[31]‎ ‎Kaczorek‎ T (2009) Stability of positive continuous-time linear systems with delays. Bull‎ ‎Pol‎ ‎Ac ‎Tech 57(4).  
[32]‎ Karbassi‎ ‎SM‎, ‎Bell‎ DJ (1994) ‎‎A new method of parametric eigenvalue assignment in state feedback control‎. ‎‎IEE Proceedings D‎141‎: ‎223-226‎.
[33]‎ Tehrani HA, Enjili F (2014( A new method for the stability of discrete-time two-dimensional systems defined by the Roesser mode. Journal of Solid and Fluid Mechanics 4(2): 67-74. 
[34]‎ Lazarevic, MP (2006) Finite time stability analysis of fractional control of robotic time-delay systems. Mech Res Commun 33: 269-279.