Experimental investigation on the effect of preprocessing in fabrication of superhydrphobic surfaces on laminar drag reduction

Authors

1 Iran University of Science & Technology

2 Mechanical Department,Islamic Azad University, East Tehran Branch

3 shiraz University

4 Ph.D. Student, Mech. Eng., Michigan Tech.Univ.,USA.

Abstract

In this paper the effect of roughness on hydrodynamical friction reduction of superhydrophobic surfaces were studied. For this purpose, different non-wettable microchannel with various processing method was fabricated and then the amount of drag reduction in laminar flow was investigated on them. The surfaces were from Aluminum and the four different methods were used to fabricate superhydrophobic surfaces. According to the results, whereas superhydropobic surfaces with hierarchical roughness could lead to a significant skin friction reduction (about 20 %), non-wettable smooth surface did not show a tangible reduction in drag force. Beside this for study the effect of preprocessing method the boiling process was added to the fabrication method. the results indicated that boiling process alongside roughening the substrates as a part of preparation of superhydrophobic surfaces intensified durability of the coated layer and drag reduction (up to 45 %). In addition surfaces which was prepared by adding boiling process were more stable in flow field.

Keywords

Main Subjects


[1] Rothstein JP (2010) Slip on Superhydrophobic Surfaces. Annu Rev Fluid Mech 42: 89-109.
[2] Cho JHJ, Law BM, Rieutord F (2004) Dipole-dependent slip of newtonian liquids at smooth solid hydrophobic surfaces. Phys Rev Lett 92(16): 166102-1-166102-4.
[3] Ma M, Hill RM (2006) Superhydrophobic surfaces. Curr Opin Colloid IN.11(4) :193-202.
[4] Yong CJ, Bhushan B (2010) Biomimetic structures for fluid drag reduction in laminar and turbulent flows. J Phys Condens Matter 22: 035104-035113.
[5] Nouri NM, Sekhavat S, Bayani Ahangar S, Faal Nazari N (2012) Effect of curing condition on superhydrophobic surface for 7075Al. J Disper Sci Technol 33(6): 771-774
[6] Cheng S, Li-Qin G, Zhong-Ze Gu (2007)    Fabrication of super-hydrophobic film with dual-size roughness by silica sphere assembly. Thin Solid Films 515(11): 4686-4690
[7] Chen L, Miao C, Huidi Z, Jianmin C (2009) Preparation of a 2024Al-based super-hydrophobic surface. J Disper Sci Technol 30(1): 48-50.
[8] Chien-Te H, Fang-L Wu, Wei-Yu C (2010) Superhydrophobicity and superoleophobicity from hierarchical silica sphere stacking layers. Mater Che Phys 121(1): 14-21.
[9] Lee C, Choi CH, Kim CJ (2016) Superhydrophobic drag reduction in laminar flows:a critical review. Exp Fluids 57(176): 1-20
[10] Jia O, Blair P, Jonathan PR (2004) Laminar drag reduction in microchannels using ultrahydrophobic surfaces. Phys Fluids 16(12): 4635-4643
[11] Watanabe K, Yanuar K, Udagawa H (1999) Drag reduction of Newtonian fluid in a circular pipe with a highly water-repellent wall. J Fluid Mech 381: 225-238.
[12] Yu YC, Wei QD (2006) Experimental study on physical mechanism of drag reduction of hydrophobic materials in laminar flow. Chinese Phys Lett 23 :1634.
[13] Daniello RJ, Waterhouse NE, Rothstein JP (2009) Drag reduction in turbulent flows over superhydrophobic surfaces. Phys Fluids 21: 085103-085112.
[14] Tretheway DC, Meinhart CD (2002) Apparent fluid slip at hydrophobic microchannel walls. Phys Fluids 14(3): L10-L12.
[15] Christophe Y, Catherine B, Cécile CB, Pierre J, Lydéric B (2007) Achieving large slip with superhydrophobic surfaces: Scaling laws for generic geometries. Phys Fluids 19: 123601-1-123610
[16] Zhang J, Tian H, Yao Zh, Hao P, Jian N (2015) Mechanisms of drag reduction of superhydrophobic surfaces in a turbulent boundary layer flow. Exp Fluids 56(179).
[17] Geraldi NR, Dodd LE, Xu BB, Wells GG,Wood D, Newton MI, McHal G (2017) Drag reduction properties of superhydrophobic mesh pipes.Surf Topogr Metrol Prop 5(034001).
[18] Zhang S, Ouyang X, Li J, Gao S, Han S, Liu L, Wei H (2015) Underwater drag-reducing effect of superhydrophobic submarine model. Langmuir 31(1): 587-593
[19] امیدوار ا (1391) مقایسه اثر کاهش درگ برای ساختارهای مختلف سطوح فوق آبگریز در رژیم جریان آرام و متلاطم دانشگاه صنعتی شیراز. پایان نامه کارشناسی ارشد.
[20] نجفی ا، نجات ا، چینی ف (1396) ارزیابی پسای هیدروفویل SD۷۰۰۳ با سطح فوق آبگریز به کمک شبیه‌سازی عددی. مهندسی مکانیک مدرس 134-126 :(2)117.
[21] Min T, Kim J (2004) Effects of hydrophobic surface on skin-friction drag. Phys Fluids 16(7): L55-L58.
[22] راستان م.، سوهانکار ا. (1396) شبیه‌سازی عددی جریان آشفتۀ کانال نیم موج با سطوح آبدوست و آبگریز. روش‌های عددی در مهندسی (2)36.
[23] Youa D, Moin P (2007) Effects of hydrophobic surfaces on the drag and lift of a circular Cylinder. Phys fluid 19: 081701-1-4.
[24] Chang HH, Umberto U, Kim J, Ho CM, Kim CH (2006) Effective slip and friction reduction in nanograted superhydrophobic microchannels. Phys Fluids 18: 087105-1-087105-8
[25] Salil G, Peter V, Richard T, Andrea M, Frank van Swol, Pratik S, Jeffrey CB (2005) Effective slip on textured superhydrophobic surfaces. Phys Fluids 17: 051701-1-051701-4.