بررسی پدیده کاهش نیروی پسا در یک جریان مغشوش سیال ویسکوالاستیک به روش شبیه‌سازی عددی مستقیم DNS

نوع مقاله: مقاله مستقل

نویسندگان

1 دانشجوی دکتری، دانشکده مهندسی مکانیک، دانشگاه سمنان

2 استادیار، دانشکده مهندسی مکانیک، دانشگاه سمنان

3 استاد، دانشکده مهندسی مکانیک، دانشگاه تربیت مدرس

چکیده

شبیه‌سازی عددی مستقیم جریان متلاطم سیال ویسکوالاستیک، به دلیل اهمیت آن در پیش‌بینی پدیده کاهش پسا و ارائه مدلهای تلاطم مخصوص جریانهای ویسکوالاستیک، بخش قابل توجهی از مطالعات مرتبط با سیالات غیرنیوتنی را به خود اختصاص داده است. در این مطالعه، پس از معرفی پدیده کاهش پسا، معادلات حاکم در سه بعد و غیر دائم جهت شبیه‌سازی عددی مستقیم جریان متلاطم در یک کانال با استفاده از مدل ویسکوالاستیک گزیکس بررسی و با توسعه یک حلگر جدید در محیط نرم‌افزار اوپن‌فوم و بر مبنای روش حجم محدود، نتایج مربوط استخراج شده است. پس از مقایسه مشخصات تلاطم جریان با نتایج مربوط به سیال نیوتنی، میزان کاهش پسا محاسبه گردیده است. همچنین نتایج موجود، با نتایج مربوط به مطالعه‌ای مشابه بر مبنای کد تفاضل محدود و به ازای پارامترهای رئولوژیک یکسان (150Reτ=، 30Weτ=، 9/0β= و 001/0α=) مقایسه و همخوانی خوبی مشاهده می‌شود. اثر تغییر ضرایب α و β بر روی مقدار کاهش پسا و مشخصات جریان بررسی شده است.

کلیدواژه‌ها

موضوعات


[1] Toms BA (1949) Observations on the flow of linear polymer solutions through straight tubes at large Reynolds numbers. Proceedings of the International Rheological Congress (General and Physical Chemistry) 2: 135-141.

[2] Housiadas KD, Beris AN (2005) Direct numerical simulations of viscoelastic turbulent channel flows at high drag reduction. Korea-Aust Rheol J 17(3): 131-140.

[3] Sureshkumar R, Beris AN, Handler RA (1997) Direct numerical simulation of the turbulent channel flow of a polymer solution. Phys Fluids 9: 743-755.

[4] Beris AN, Dimitropoulos CD (1999) Pseudospectral simulation of turbulent viscoelastic channel flow. Comput. Methods Appl Mech Engrg 180: 365-392.

[5] Yu B, Kawaguchi Y (2003) Effect of Weissenberg number on the flow structure: DNS study of drag-reducing fluid with surfactant additives. Int J Heat Fluid Fl 24: 491-499.

[6] Yu B, Kawaguchi Y (2004) Direct numerical simulation of viscoelastic drag-reducing flow: a faithful finite difference method. J Non-Newton Fluid 116: 431-466.

[7] Yu B, Li F, Kawaguchi Y (2004) Numerical and experimental investigation of turbulent characteristics in a drag-reducing flow with surfactant additives. Int J Heat Fluid Fl 25: 961-974.

[8] Housiadas KD, Beris AN (2004) An efficient fully implicit spectral scheme for DNS of turbulent viscoelastic channel flow. J Non-Newton Fluid 122: 243-262.

[9] Housiadas KD, Beris AN (2006) Extensional behavior influence on viscoelastic turbulent channel flow. J Non-Newton Fluid 140: 41-56.

[10] Li CF, Sureshkumar R, Khomami B (2006) Influence of rheological parameters on polymer induced turbulent drag reduction. J Non-Newton Fluid 140: 23-40.

[11] Yu B, Kawaguchi Y (2006) Parametric study of surfactant-induced drag-reduction by DNS. Int J Heat Fluid Fl 27: 887-894.

[12] Housiadas KD, Wang L, Beris AN (2010) A new method preserving the positive definiteness of a second order tensor variable in flow simulations with application to viscoelastic turbulence. Comput Fluid 39: 225-241.

[13] Ohta T, Usui Y, Yasoshima H (2012) Predicting drag-reducing wall turbulence of surfactant solution by direct numerical simulation. JFST 7(3): 259-274.

[14] Thais L, Gatski TB, Mompean G (2012) Some dynamical features of the turbulent flow of a viscoelastic fluid for reduced drag. J Turbul 13(19): 1-26.

[15] Graham MD (2014) Drag reduction and the dynamics of turbulence in simple and complex fluids. Physic Fluid 26: 101301.

[16] موسائی الف (1393) توسعه روش میدان­های تصادفی برای شبیه­سازی عددی مستقیم کاهش درگ با میکروفیبر در جریان کانال آشفته. ماهنامه علمی پژوهشی مهندسی مکانیک مدرس 82-75 :(4)14.  

[17] Kawamura H (2010) DNS database of wall turbulence and heat transfer. Tokyo University of Science. http://murasun.me.noda.tus.ac.jp/turbulence/.

[18] Pinho FT (2003) A GNF framework for turbulent flow models of drag reducing fluids and proposal for a k–ε type closure. J Non-Newton Fluid 114: 149-184.

[19] Cruz DOA, Pinho FT, Resende PR (2004) Modelling the new stress for improved drag reduction predictions of viscoelastic pipe flow. J Non-Newton Fluid 121: 127-141.

[20] Bird RB, Curtiss CF, Armstrong RC, Hassager O (1987) Dynamics of Polymeric Liquids. 2nd edn. John Wiley & Sons Inc., New York.

[21] Favero JL, Secchi AR, Cardozo NSM, Jasak H (2010) Viscoelastic flow analysis using software OpenFOAM and differential constitutive equations. J Non-Newton Fluid 165: 1625-1636.

[22] Van Haren SW (2011) Testing DNS capability of OpenFOAM and STAR-CCM+. M.Sc. Thesis, Delft University of Technology.

[23] Dean RB (1978) Reynolds number dependence of skin friction and other bulk flow variables in two-dimensional rectangular duct flow. J Fluid Eng-T Asme 100: 215-223.

[24] Jiang X, Lai CH (2009) Numerical Techniques for Direct and Large-Eddy Simulations. CRC Press/Taylor & Francis Ltd., Boca Raton.

[25] Virk PS (1971) An elastic sublayer model for drag reduction by dilute solutions of linear macromolecules. J Fluid Mech 45: 417-440.

[26] Chhabra RP, Richardson JF (2008) Non–Newtonian Flow and Applied Rheology. 2nd edn. IChemE., New York.