مطالعه اثر پیش گرمایش سوخت گاز طبیعی بر تشکیل دوده، درخشندگی شعله و انتشار NO به روش عددی و آزمایشگاهی

نوع مقاله : مقاله مستقل

نویسندگان

1 دانشجوی دکتری تخصصی، گروه مهندسی مکانیک، دانشگاه فردوسی مشهد، پردیس بین الملل، مشهد، ایران

2 استاد، گروه مهندسی مکانیک، دانشگاه فردوسی مشهد، مشهد، ایران

چکیده

در این مقاله به مطالعه اثر افزایش دمای گاز طبیعی ورودی به یک مشعل kW120، بر تشکیل دوده و افزایش تابش درخشانی ناشی از آن به روش عددی و آزمایشگاهی پرداخته شده است. جهت شبیه سازی اثر دمای گاز ورودی بر احتراق و مدلسازی تشکیل کربن جامد از تجزیه حرارتی گاز، از مدل احتراق آشفته غیر پیش آمیخته بر اساس دو پارامتر متوسط و واریانس کسر مخلوط و برای مدلسازی ترمهای تنشهای توربولانی در معادلات مومنتوم از مدل آشفتگی تنش رینولدز استفاده شده است. همچنین جهت محاسبه دوده، که نقش مهمی بر میزان تابش شعله دارد از مدل ماس-بروکس و برای اعمال اثر آشفتگی جریان بر تشکیل دوده از β-PDF استفاده شده است. مطالعات آزمایشگاهی نیز بر روی یک بویلر که گاز ورودی به مشعل آن با المنت حرارتی کروم-نیکل پیش‌گرم می‌شود، انجام شده است. نتایج نشان می‌دهد با توجه به عدم افزایش محتوی دوده شعله با افزایش دمای سوخت ورودی تا دمای K510، درخشندگی شعله تغییر چندانی نکرده است، اما با افزایش دما تا K700 به دلیل 3 برابر شدن بیشینه کسر جرمی دوده در شعله، درخشندگی شعله افزایش زیادی‌می‌یابد. این افزایش درخشندگی، سبب کاهش دمای شعله به اندازه K150، و کاهش انتشار NO شده است. نتایج عددی و آزمایشگاهی در پیشگرم کردن سوخت توافق مطلوبی را نشان‌می-دهند.

کلیدواژه‌ها

موضوعات


[1]  Viskanta R, Mengu MP (1987) Radiation heat transfer in combustion systems. Prog Energ Combust 13: 97-160.  
[2]  Keramidaa EP, Liakosa HH, Fountib MA, Boudouvisa AG, Markatos NC (2000) Radiative heat transfer in natural gas-fired furnaces. Int J Heat Mass Tran 43: 1801-1809.
[3]  Green AES, Green BAS, Wagner JC (2000)  Radiation enhancement in oil/coal boilers converted to naturalgas. Available Online at  http://www.google.com/patents/US4978367, 1990.
[4] Xie L, Kishi T, Kono M (1993) The influences of electric fields on soot formation and flame structure of diffusion flames. J Therm Sci 2: 288-293.
[5] Mandal BK, Sarkar A, Datta A (2006) Numerical prediction of the soot and NO formation in a confined laminar diffusion flame without and with air preheat. P I Mech Eng A-J Pow 220: 473-486.
[6] Lim J, Gore J, Viskanta R (2000) A study of the effects air preheat on the structure of methane/air counterflow diffusion flames. Combust Flame 121: 262-274.
[7] Kim WB, Chung DH, Yang JB, Noh DS (2001) An experimental study on high temperature and low oxygen air combustion. J Therm Sci 9: 169-175.
[8] Konsur B, Megaridis CM (1999) Fuel preheat effects on soot-field structure in laminar gas jet diffusion flames burning in 0-g and 1-g. Combust Flame 116: 334-347.
[9] Yang WW, Blasiak W (2005) Numerical study of fuel temperature influence on single gas jet combustion in highly preheated and oxygen deficient air. Energy 30: 385-398.
[10] Poorhoseini SH, Moghiman M (2014) Experimental study on the effect of coal injection on structure, radiation, temperature and thermal efficiency of natural gas diffusion flames. Modares Mech Eng 14(7): 163-168. (In Persian)
[11] Poorhoseini SH, Moghiman M (2015) An experimental study on the effect of synchronous combustion of gasoil on luminosity and rdiative heat transfer of natural gas flame. Modares Mech Eng 14(15): 11-16. (In persian)
[12] Javadi SM, Moghiman M (2011) Experimental study of natural gas temperature effects on the flame luminosity and NO emission in a 120 kW boiler. Fuel Combus 4(1): 87-95. (In persian)
[13] Abanades S, Flamant G (2007) Experimental study and modeling of a high-temperature solar chemical reactor for hydrogen production from methane cracking. Int J Hydrogen Energ 32(10): 1508-1515.
[14] Atreya A, Zhang C, Kim HK, Shamim T, Suh J (1996) The effect of changes in the flame structure on formation and destruction of soot and NOx in radiating diffusion flames. The Twenty-Sixth (International) Symposium on Combustion, The Combustion Institue 2181-2189.
[15] Mungekar HP, Atreya A (2001) Flame radiation and NO emission in partially premixed flames. In Proceedings of the 2nd Joint Meeting of the US Sections of the Combustion Institute.
[16] Taylor PB, Foster PJ (1974) Some gray weighting coefficients for CO2-H2O-Soot mixtures. Int J Heat Mass Tran 18(11): 1331-1332.
[17] Ansys Inc., Ansys Fluent Theory guide, Release 15, Accessed on 28 December 2015; http://148.204.81.206/Ansys/readme.html, 2013.
[18] Wen Z, Yun S (2003) Modeling soot formation in turbulent kerosene/air jet diffusion flames, Combustion and Flame, 135: 323–340.
[19] BS EN 676 (2003) Automatic forced draught burners for gaseous fuels. European Standards.
[20] Testo Inc. Short Operation Instruction Manual (testo 350 M/XL): Rev.11/03 Instrument Software Version 1.30, Accessed on 10 July 2015; http://www.testo.com.
[21] Nagamine F, Shimokawa R, Miyake Y, Nakata M, Fujisawa K (1990) Calibration of  Pyranometers for the photovoltaic device field. Appl Phys 29: 516-521.
[22] Lia YH, Wub CY, Lia HY, Chao YC (2011) Concept and combustion characteristics of the high-luminescence flame for thermophotovoltaic systems. P Combust Inst 33(2): 3447-3454.
[23] Zhukov YS, Karpushin VK, Kurochkin BN, Fomin NA, Klyucherov AP, Girisikh VF (1977) Preheating the natural gas used to heat open-hearth furnaces. Metallurgist 5: 23-24.
[24] Guo H, Smallwood GJ (2007) The interaction between soot and NO formation in a laminar axisymmetric coflow ethylene/air diffusion flame. Combust Flame 149: 225-233.