بررسی اثر تزریق نوک بر ساختار جریان نشتی نوک در یک کمپرسور محوری

نوع مقاله : مقاله مستقل

نویسندگان

1 استادیار، دانشکده مهندسی مکانیک، دانشگاه صنعتی اراک، اراک

2 کارشناسی ارشد، دانشکده مهندسی مکانیک، دانشگاه صنعتی شریف، تهران، ایران

3 کارشناسی ارشد، دانشکده مهندسی مکانیک، دانشگاه صنعتی اراک، اراک

چکیده

جریان نشتی نوک پره کمپرسور یکی از عوامل تاثیرگذار بر عملکرد کمپرسورهای محوری است که می‌تواند موجب آسیب زدن به پره‌های کمپرسور نیز گردد. در مقاله حاضر به بررسی اثر تزریق هوا جهت کاهش اثرات مخرب جریان نشتی نوک بر عملکرد کمپرسور محوری، پرداخته می‌شود. بدین منظور تحلیل عددی جریان در کمپرسور محوری ناسا روتور 37 با استفاده از نرم‌افزار CFX انجام می‌گردد. در ابتدا منحنی عملکرد کمپرسور در حالت بدون تزریق با نتایج تجربی مقایسه گردیده و تطابق خوبی مشاهده شده‌است. در ادامه با در نظر گرفتن تزریق هوا برای یک گذرگاه، منحنی‌های عملکردی در مقایسه با حالت بدون تزریق بررسی گردید. با تزریق هوا، نسبت فشار افزایش و راندمان آدیاباتیک کمپرسور در دبی‌های یکسان کاهش می‌یابد. مشخص گردید که تزریق هوا موجب کاهش افت‌های موجود در کمپرسور محوری و تضعیف گردابه‌های ایجاد شده می‌گردد. این امر باعث کاهش ضریب افت روتور و همچنین کاسته شدن زاویه حمله جریان می‌شود. بر این اساس اعمال تزریق موجب افزایش حاشیه واماندگی و افزایش محدوده عملکردی کمپرسور به ترتیب به میزان 6 و 66 درصد می‌گردد. همچنین جریان نشتی نوک نسبت به حالت بدون تزریق دارای قدرت کمتری می باشد که در نتیجه افت کمتری در حالت با تزریق رخ می دهد.

کلیدواژه‌ها

موضوعات


[1] K. Yamada, H. Kikuta, K.-i. Iwakiri, M. Furukawa, and S. Gunjishima. (2013) An explanation for flow features of spike-type stall inception in an axial compressor rotor. J. Turbomach. vol. 135.
[2] عباسی, ثاراله,  ب. زاده. (1398) بررسی عددی ساختار جریان نشتی نوک در روتور کمپرسور محوری گذر‌‌صوت در شرایط عملکردی مختلف. نشریه مهندسی مکانیک امیرکبیر.
[3] زینعلی, مرحمت, عباسی, ثاراله و ت. زنوز. (1396) بررسی تجربی و عددی اثر پوسته شیاردار بر اغتشاشات جریان نشتی نوک در یک کمپرسور محوری. مکانیک سازه ها و شاره ها.
[4] C.-T. Dinh, M.-W. Heo, and K.-Y. Kim. (2015) Aerodynamic performance of transonic axial compressor with a casing groove combined with blade tip injection and ejection. Aerosp Sci Technol. vol. 46, pp. 176-187.
[5] S. Abbasi, A. Pirnia, and R. Taghavi-Zenouz. (2018) Investigation of inlet distortion effects on axial compressor performance based on streamline curvature method. JTAM. vol. 56, pp. 1005-1015..
[6] S. Abbasi and A. Joodaki. (2020) Effect of blade profile on the performance characteristics of axial compressor in design condition. JCARME. vol. 9, pp. 287-296.
[7] S. Abbasi and A. Gholamalipour. (2020) Parametric study of injection from the casing in an axial turbine. P I MECH ENG A-J POW. vol. 234, pp. 582-593.
[8] م. محمودی, م. جهرمی, ع. کیالی و ع. امینایی. (1399) اعتبار سنجی روش های پیش بینی مشخصه های عملکردی کمپرسور محوری در محدوده واماندگی. مهندسی مکانیک دانشگاه تبریز.
[9]  ش. فرد, ر. اسلامی و زارع. (1395) تحلیل فرکانسی ریزش گردابه در کسکید کمپرسور محوری در اعداد رینولدز متوسط. مکانیک سازه ها و شاره ها.
[10] H. Chen, X. Huang, K. Shi, S. Fu, M. Ross, M. A. Bennington, et al.(2014) A computational fluid dynamics study of circumferential groove casing treatment in a transonic axial compressor. J. Turbomach. vol. 136.
[11] C. Hah.(2017) Effects of double-leakage tip clearance flow on the performance of a compressor stage with a large rotor tip gap. J. Turbomach. vol. 139.
[12] X. Ren and C. Gu.(2016) A numerical study on the tip clearance in an axial transonic compressor rotor. Appl. Therm. Eng. vol. 103, pp. 282-290.
[13] D. Wisler.(1984) Loss reduction in axial-flow compressors through low-speed model testing. ASME paper p. 184.
[14] M. W. Wiseman and T.-H. Guo (2001) An investigation of life extending control techniques for gas turbine engines. ACC (Cat. No. 01CH37148)  pp. 3706-3707.
[15] I. Wilke, H.-P. Kau, and G. Brignole (2005) Numerically aided design of a high-efficient casing treatment for a transonic compressor in Turbo Expo. JPLCA pp. 353-364.
[16] R. Davis and J. Yao (2006) Axial compressor rotor flow structure at stall-inception. in 44th AIAA ASME. p. 419.
[17] M. Zhang and A. Hou. (2017) Investigation on stall inception of axial compressor under inlet rotating distortion. P I MECH ENG A-J Mech. Eng. Sci.. vol. 231, pp. 1859-1870.
[18] J. J. Adamczyk, M. Celestina, and E. Greitzer. (1993) The role of tip clearance in high-speed fan stall. ASME 345 E.47.
[19] I. Wilke and H.-P. Kau (2003) A numerical investigation of the flow mechanisms in a HPC front stage with axial slots. Turbo Expo PLSA.  pp. 465-477.
[20] A. Epstein, J. F. Williams, and E. Greitzer. (1989) Active suppression of aerodynamic instabilities in turbomachines. Propuls. Power.  vol. 5, pp. 204-211.
[21] R. Taghavi-Zenouz and S. Abbasi. (2015) Alleviation of spike stall in axial compressors utilizing grooved casing treatment. CJA. vol. 28, pp. 649-658.
[22] T.-D. Vuong, K.-Y. Kim, and C.-T. Dinh. (2021) Recirculation-groove coupled casing treatment for a transonic axial compressor. Aerosp. Sci. Technol. vol. 111, p. 106556.
[23] C. Nie, Z. Tong, S. Geng, J. Zhu, and W. Huang. (2007) Experimental investigations of micro air injection to control rotating stall. J. Therm. Sci. vol. 16, pp. 1-6.
[24] K. L. Suder, M. D. Hathaway, S. A. Thorp, A. J. Strazisar, and M. B. Bright. (2001) Compressor stability enhancement using discrete tip injection. J. Turbomach. vol. 123, pp. 14-23.
[25] H. Khaleghi. (2014) Effect of discrete endwall recirculation on the stability of a high-speed compressor rotor. Aerosp. Sci. Technol. vol. 37, pp. 130-1370.
[26] G. Cassina, B. H. Beheshti, A. Kammerer, and R. S. Abhari (2007) Parametric study of tip injection in an axial flow compressor stage. Turbo Expo. PLSA. pp. 137-145.
[27] J. Li. (2017) Self-adaptive stability-enhancing technology with tip air injection in an axial flow compressor. J. Turbomach vol. 139.
[28] J. Li, F. Lin, Z. Tong, C. Nie, and J. Chen. (2015) The dual mechanisms and implementations of stability enhancement with discrete tip injection in axial flow compressors. J. Turbomach. vol. 137.
[29] J. Li, J. Du, Z. Li, and F. Lin. (2018) Stability enhancement with self-recirculating injection in axial flow compressor. J. Turbomach. vol. 140.
[30] I. Benhegouga and Y. Ce. (2013) Steady Air Injection Flow Control Parameters in a Transonic Axial Compressor. Res. J. Appl. Sci. vol. 5, pp. 1441-1448.
[31] X. Liu, J. Teng, J. Yang, X. Sun, D. Sun, C. He, et al. (2019) Calculation of stall margin enhancement with micro-tip injection in an axial compressor. J. Fluids Eng. vol. 141.
[32] W. Wei, C. Wuli, H. Zhang, and H. Kuang. (2017) Experimental and numerical study of tip injection in a subsonic axial flow compressor. CJA. vol. 30, pp. 907-917.
[33] B. Beheshti, B. Farhanieh, K. Ghorbanian, J. Teixeira, and P. Ivey. (2005) Performance enhancement in transonic axial compressors using blade tip injection coupled with casing treatment. Proc. Inst. Mech. Eng. A: J. Power Energy.  vol. 219, pp. 321-331.
[34] B. H. Beheshti, K. Ghorbanian, B. Farhanieh, J. A. Teixeira, and P. C. Ivey (2006) A new design for tip injection in transonic axial compressors. Turbo Expo. PLSA. pp. 39-47.
[35] K. L. Suder, M. D. Hathaway, S. A. Thorp, A. J. Strazisar, and M. B. Bright (2000) Compressor stability enhancement using discrete tip injection. Turbo Expo. PLSA. p. V001T03A110.
[36] A. Mushtaq, K. Parvez, S. Ahmad, and J. Khan (2011) Parametric Study of Tip Injection on Stability of Transonic Axial Flow Compressor. in 49th AIAA ASM. 2011, p. 744.
[37] X. Lu, W. Chu, J. Zhu, and Z. Tong. (2006) Numerical and experimental investigations of steady micro-tip injection on a subsonic axial-flow compressor rotor. Int. J. Rotating Mach. vol. 2006.
[38] B. H. Beheshti, K. Ghorbanian, B. Farhanieh, J. A. Teixeira, and P. C. Ivey (2006) A new design for tip injection in transonic axial compressors. Turbo Expo. PLSA. pp.39-47.
[39] N. Ahmad, J. Bin, Z. Qun, S. A. Ahmad, and H. Fawzy. (2020) Performance enhancement of a transonic axial flow compressor with circumferential casing grooves to improve the stall margin. J. Appl. Fluid Mech. vol. 13, pp. 221-232.
[40] J. Li, J. Du, S. Geng, F. Li, and H. Zhang. (2020) Tip air injection to extend stall margin of multi-stage axial flow compressor with inlet radial distortion. Aerosp. Sci. Technol. vol. 96, p. 105554.
[41] J. Li. (2017) Self-adaptive stability-enhancing technology with tip air injection in an axial flow compressor. J. Turbomach. vol. 139, p. 011008.
[42] R. D. Moore (1980) Performance of single-stage axial-flow transonic compressor with rotor and stator aspect ratios of 1.19 and 1.26 respectively, and with design pressure ratio of 2.05. NASA.
[43] L. Reid and R. D. Moore. (1978) Design and overall performance of four highly loaded, high speed inlet stages for an advanced high-pressure-ratio core compressor. TP, Doc. ID. 19780025165.
[44] D. Anderson, J. C. Tannehill, and R. H. Pletcher (2016) Computational fluid mechanics and heat transfer: Taylor and Francis. 3th edn.  Taylor and Francis.
 
[45] T. Cebeci and A. Smith. (1974) Analysis of Turbulent Boundary Layers. New York; San Francisco, London, Academic Press.
[46] M. D. Hathaway (2002) Self-recirculating casing treatment concept for enhanced compressor performance. NASA/TM-211569 vol. 3610.