کنترل پوشش توزیع‌شده سیستم چند عامله در یک منطقه بحران‌زده و مکانیابی اهداف ساکن احتمالی موجود در منطقه

نوع مقاله : مقاله مستقل

نویسندگان

1 دانشجوی دکتری، دانشکده مهندسی هوافضا، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران، ایران

2 دانشیار، آزمایشگاه پرنده های بدون سرنشین، دانشکده مهندسی هوافضا، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران، ایران

10.22044/jsfm.2022.11058.3442

چکیده

این مقاله به مساله جستجو و پوشش مشارکتی اختصاص دارد که در آن یک الگوریتم کنترل توزیع شده برای جستجوی خودکار قربانیان بلایای طبیعی با استفاده از سیستم چند عامله مشارکتی به کار گرفته شده است. مدیریت بحران یک مسابقه با زمان است. بنابراین پاسخ سریع به بحران می‌تواند به طور چشمگیری از میزان خسارات و آسیب‌ها بکاهد. بدیهی است که یک نقشه فراگیر از منطقه بحران‌زده بلافاصله پس از وقوع به تیم کنترل بحران کمک می‌کند تا عملیات مدیریت بحران را با اطلاعات بیشتر و دقیق‌تری طراحی نماید. در این تحقیق یک محیط مستطیلی در نظر گرفته شده که 4 پرنده بال‌-‌ثابت با پرواز بر فراز آن علاوه بر پوشش حداکثری محیط، محل دقیق 18 هدف ساکن توزیع‌شده را می‌یابند. بدین منظور، UAV ها با همکاری یکدیگر نقشه شناخت شامل نقشه های احتمال حضور هدف و نامعینی را می‌سازند و براساس همین نقشه شناخت و همچنین پیش‌بینی سه حرکت بعدی خود و عامل‌های همسایه، بهترین مسیر بدون برخورد را محاسبه می‌کنند. مقایسه روش مشارکتی و غیر مشارکتی نشان می‌دهد در روش کنترل توزیع شده مشارکتی، درصد پوشش محیط و میانگین نامعینی بسیار زودتر به حداکثر و حداقل مقدار قابل قبول خود می‌رسد.

کلیدواژه‌ها


[1] Aminzadeh A, Khoshnood A (2021) A review on natural disaster management with the aid of a multi agent system comprising unmanned vehicles. The 19th International Conference of Iranian Aerospace Society, Tehran, Iran, 2021.
[2] Rosalie M, Danoy G, Bouvry P, Chaumette S (2016) UAV multilevel swarms for situation management. Proceedings of the 2nd Workshop on Micro Aerial Vehicle Networks, Systems, and Applications for Civilian Use 49-52.
[3] Liu CH, Chen Z, Tang J, Xu J, Piao C (2018) Energy-efficient UAV control for effective and fair communication coverage: A deep reinforcement learning approach. IEEE J Sel Area Comm 36(9): 2059-2070.
[4] Zhao H, Wang H, Wu W, Wei J (2018) Deployment algorithms for UAV airborne networks toward on-demand coverage. IEEE J Sel Area Comm 36(9): 2015-2031.
[5] Bor-Yaliniz RI, El-Keyi A, Yanikomeroglu H (2016) Efficient 3-D placement of an aerial base station in next generation cellular networks. IEEE international conference on communications (ICC): 1-5.
[6] Chen M, Mozaffari M, Saad W, Yin C, Debbah M, Hong CS (2017) Caching in the sky: Proactive deployment of cache-enabled unmanned aerial vehicles for optimized quality-of-experience. IEEE J Sel Area Comm 35(5): 1046-1061.
[7] Mozaffari M, Saad W, Bennis M, Debbah M (2016) Efficient deployment of multiple unmanned aerial vehicles for optimal wireless coverage. IEEE Commun Lett  20(8): 1647-1650.
[8] Kalantari E, Yanikomeroglu H, Yongacoglu A (2016) On the number and 3D placement of drone base stations in wireless cellular networks. IEEE 84th Vehicular Technology Conference (VTC-Fall): 1-6.
[9] Sivakumar A, Tan CKY (2010) UAV swarm coordination using cooperative control for establishing a wireless communications backbone. Proceedings of the 9th International Conference on Autonomous Agents and Multiagent Systems 3: 1157-1164.
[10] Lyu J, Zeng Y, Zhang R, Lim TJ (2016) Placement optimization of UAV-mounted mobile base stations. IEEE Commun Lett  21(3): 604-607.
[11] Wu Q, Zeng Y, Zhang R (2018) Joint trajectory and communication design for multi-UAV enabled wireless networks. IEEE T Wirel Commun 17(3): 2109-2121.
[12] Tuna G, Mumcu TV, Gulez K (2012) Design strategies of unmanned aerial vehicle-aided communication for disaster recovery. High Capacity Optical Networks and Emerging/Enabling Technologies 115-119.
[13] Bupe P, Haddad R, Rios-Gutierrez F (2015) Relief and emergency communication network based on an autonomous decentralized UAV clustering network. SoutheastCon 2015 1-8.
[14] Dalmasso I, Galletti I, Giuliano R, Mazzenga F (2012) WiMAX networks for emergency management based on UAVs. IEEE First AESS European Conference on Satellite Telecommunications (ESTEL) 1-6.
[15] Beck Z, Teacy WL, Rogers A, Jennings NR (2018) Collaborative online planning for automated victim search in disaster response. Robot Auton Syst 100: 251-266.
[16] Murphy RR (2012) Marine heterogeneous multirobot systems at the great Eastern Japan Tsunami recovery. J Field Robot 29(5): 819-831.
[17] Zhang J, Xiong J, Zhang G, Gu F, He Y (2016) Flooding disaster oriented USV & UAV system development & demonstration. Oceans 2016-Shanghai 1-4.
[18] Beck Z, Teacy W, Jennings N, Rogers A (2016) Online planning for collaborative search and rescue by heterogeneous robot teams. Proceedings of the 2016 International Conference on Autonomous Agents & Multiagent Systems.
[19] Beck Z (2016) Collaborative search and rescue by autonomous robots. University of Southampton.
[20] Gutiérrez MA, Nair S, Banchs RE, Enriquez LF, Niculescu AI, Vijayalingam A (2015) Multi-robot collaborative platforms for humanitarian relief actions. IEEE Region 10 Humanitarian Technology Conference (R10-HTC): 1-6.
[21] Sánchez-García J, García-Campos JM, Toral S, Reina D, Barrero F (2016) An intelligent strategy for tactical movements of UAVs in disaster scenarios. Int J Distrib Sens N 12(3).
[22] Kim Y, Bang H (2016) Decentralized control of multiple unmanned aircraft for target tracking and obstacle avoidance. International Conference on Unmanned Aircraft Systems (ICUAS): 327-331.
[23] Moon S, Yang K, Gan SK, Shim DH (2015) Decentralized information-theoretic task assignment for searching and tracking of moving targets. International Conference on Unmanned Aircraft Systems (ICUAS): 1031-1036.
[24] Michael N (2014) Collaborative mapping of an earthquake damaged building via ground and aerial robots. Springer Trac Adv RO 33-47.
[25] Pham HX, La HM, Feil-Seifer D, Deans MC (2018) A distributed control framework of multiple unmanned aerial vehicles for dynamic wildfire tracking. IEEE Trans Syst Man Cybern: Syst.
[26] Julian KD, Kochenderfer MJ (2019) Distributed wildfire surveillance with autonomous aircraft using deep reinforcement learning. J Guid Control Dynam 42(8): 1768-1778.
[27] Lin Z, Liu HH (2018) Topology‐based distributed optimization for multi‐UAV cooperative wildfire monitoring. Optim Control Appl Methods 39(4): 1530-1548.
[28] Lin Z (2017) Multiple UAV cooperation for wildfire monitoring. Ph.D. Thesis, University of Toronto, Canada.
[29] Afghah F, Razi A, Chakareski J, Ashdown J (2019) Wildfire Monitoring in Remote Areas using Autonomous Unmanned Aerial Vehicles. IEEE INFOCOM 2019-IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS): 835-840.
[30] Bailon-Ruiz R, Lacroix S, Bit-Monnot A (2018) Planning to monitor wildfires with a fleet of UAVs. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS): 4729-4734.
[31] Rabinovich S, Curry RE, Elkaim GH (2018) Toward dynamic monitoring and suppressing uncertainty in wildfire by multiple unmanned air vehicle system. J Robotic Syst 2018(4): 1-12
[32] Quaritsch M, Kruggl K, Wischounig-Strucl D, Bhattacharya S, Shah M, Rinner B (2010) Networked UAVs as aerial sensor network for disaster management applications. Elektrotech Inf 127(3): 56-63.
[33] Maza I, Caballero F, Capitán J, Martínez-de-Dios JR, Ollero A (2011) Experimental results in multi-UAV coordination for disaster management and civil security applications. J Intell Robot Syst 61(1-4): 563-585.
[34] Han J, Xu Y, Di L, Chen Y (2013) Low-cost multi-UAV technologies for contour mapping of nuclear radiation field. J Intell Robot Syst 70(1-4): 401-410.
[35] Farfaglia S (2015) The use of UAV to monitor and manage the territory: perspectives from the SMAT project. Eng Geol Soc 691-695.
[36] Carlsson JG, Song S (2018) Coordinated logistics with a truck and a drone. Manage Sci 64(9): 4052-4069.
[37] Mosterman PJ, Sanabria DE, Bilgin E, Zhang K, Zander J (2014) A heterogeneous fleet of vehicles for automated humanitarian missions. Comput Sci Eng 16(3): 90-95.
[38] Chao H, Cao Y, Chen Y (2007) Autopilots for small fixed-wing unmanned air vehicles: A survey. International Conference on Mechatronics and Automation 3144-3149.
[39] Yanmaz E, Costanzo C, Bettstetter C, Elmenreich W (2010) A discrete stochastic process for coverage analysis of autonomous UAV networks. IEEE Globe Work 1777-1782.
[40] Li J, Chen J, Wang P, Li C (2018) Sensor-oriented path planning for multiregion surveillance with a single lightweight UAV. SAR 18(2): 548, 2018.
[41] Liu Z, Gao X, Fu X (2018) A cooperative search and coverage algorithm with controllable revisit and connectivity maintenance for multiple unmanned aerial vehicles. Sensors 18(5): 1472.
[42] Yang Y (2005) Cooperative search by uninhabited air vehicles in dynamic environment. University of Cincinnati.