شبیه‌سازی گردابه‌های بزرگ جریان آشفته سه‌بعدی جابجایی‌ترکیبی داخل محفظه دارای تهویه حاوی مانع و استخراج ساختار‌های منسجم به روش تفکیک به مودهای متعامد

نوع مقاله: مقاله مستقل

نویسندگان

1 استادیار، دانشکده مکانیک، دانشگاه صنعتی ارومیه

2 دانشجوی کاشناسی ارشد، دانشکده مکانیک، دانشگاه صنعتی ارومیه

چکیده

در مقاله حاضر جریان آشفته سه بعدی داخل محفظه دارای تهویه همراه با انتقال حرارت ترکیبی(آزاد-اجباری) به روش شبیه سازی گردابه های بزرگ (LES) حل و با نتایج آزمایشگاهی و عددی موجود اعتبارسنجی شد. انتقال حرارت اجباری در کار حاضر به دلیل ورود سیال از سیستم تهویه به داخل محفظه و انتقال حرارت آزاد به دلیل اختلاف دمای قسمت کف و دیواره های محفظه می باشد. به منظور بررسی اثر مانع بر مشخصه های جریان، شبیه سازی برای مانع با سه ارتفاع متفاوت انجام گرفته است. در ادامه با اعمال الگوریتم تفکیک به مودهای متعامد (POD) بر میدان سرعت نوسانی در جهت x، تاثیر موانع بر ساختارهای منسجم مورد بررسی قرار گرفته اند. نتایج نشانگر این است که اولا مانع سبب افزایش شدید انرژی ساختارهای منسجم جریان می شود، ثانیا مانع با ارتفاع زیاد ساختارهای منسجم جریان را کوچکتر و مانع با ارتفاع متوسط و کوچک سبب بزرگتر شدن ساختارهای منسجم جریان می شوند.

کلیدواژه‌ها

موضوعات


[1] Alinia M, Ganji DD, Gorji-Bandpy M (2011) Numerical study of mixed convection in an inclined two sided lid driven cavity filled with nanofluid using two-phase mixture model. Int J Heat Mass Transf 38(10): 1428-1435.

[2] Nasrin R (2011) Rayleigh and Prandtl number effects on free and forced magnetoconvection in a lid driven enclosure with wavy bottom wall. Int J Energ and Tech 3(23): 1-8. 

[3] Fereidoon A, Saedodin S, Hemmat Esfe M, Noroozi MJ (2013) Evaluation of mixed convection in inclined square lid-driven cavity filled with Al2O3/water nano-fluid. Eng Appl Comp Fluid Mech 7(1): 55-65.

[4] Zheng GF, Ha MY, Yoon HS, Park YG (2013) A numerical study on mixed convection in a lid-driven cavity with a circular cylinder. J Mech Sci Tech 27(1): 273-286.

[5] Jeng TM, Tzeng SC (2008) Heat transfer in a lid-driven enclosure filled with water-saturated aluminum foams. Numer. Heat Trans A 54(2): 178-196.

[6] Ghasemi B, Aminossadati SM (2008) Comparison of mixed convection in a square cavity with an oscillating versus a constant velocity wall. Numer Heat Trans A 54(7): 726-743.

[7] Sharif MAR (2007) Laminar mixed convection in shallow inclined driven cavities with hot moving lid on top and cooled from bottom. Appl Therm Eng 27(5): 1036-1042.

[8] Wong JCF (2007) Numerical simulation of two-dimensional laminar mixed-convection in a lid-driven cavity using the mixed finite element consistent splitting scheme. Int J Numer Method Heat Fluid Flow 17(1): 46-93.

[9]  Luo WJ, Yang RJ (2007) Multiple fluid flow and heat transfer solutions in a two-sided lid-driven cavity. Int J Heat Mass Trans 50(11): 2394-2405.

[10] Khanafer KM, Al-Amiri AM, Pop I (2007) Numerical simulation of unsteady mixed convection in a driven cavity using an externally excited sliding lid. European J Mech B 26(5): 669-687.

[11] Oztop HF, Dagtekin I (2004) Mixed convection in two-sided lid-driven differentially heated square cavity. Int J Heat Mass Trans 47(8): 1761-1769.

[12] Shankar PN, Deshpande MD (2000) Fluid mechanics in the driven cavity. Annu Rev Fluid Mech 32(1): 93-136.

[13] Yang OAWJ (2000) Mixed convection in cavities with a locally heated lower wall and moving sidewalls. Numer. Heat Trans A 37(7): 695-710.

[14] Aydm O (1999) Aiding and opposing mechanisms of mixed convection in a shear-and buoyancy-driven cavity. Int Commun Heat Mass Trans 26(7): 1019-1028.

[15] Mohamad AA, Viskanta R (1995) Flow and heat transfer in a lid-driven cavity filled with a stably stratified fluid. Appl Math Model 19(8): 465-472.

[16] Mergui S (1993) Caracte´risation expe´rimentale des e´coulements d’air de convection naturelle et mixte dans une cavite´ ferme´e, the`se de l’Universite´ de Poitiers, France.

[17] Chen WZQ (2000) Large eddy simulation of natural and mixed convection airflow indoors with two simple filtered dynamic subgrid scale models. Numer Heat Trans A 37(5): 447-463.

[18] Zhang Z, Zhang W, Zhai ZJ, Chen QY (2007) Evaluation of various turbulence models in predicting airflow and turbulence in enclosed environments by CFD: Part 2—Comparison with experimental data from literature. Hvac&R Research 13(6): 871-886.

[19] Blay D, Mergui S, Niculae C (1993) Confined turbulent mixed convection in the presence of a horizontal buoyant wall jet. ASME-PUBLICATIONS-HTD 213: 65-65.

[20] Blay D, Mergui S, Tuhault JL, Penot F (1993) Experimental turbulent mixed convection created by confined buoyant wall jets. In: First Eur Heat Trans Conf UK 821–828.

[21] Xu W, Chen Q (2001) A two-layer turbulence model for simulating indoor airflow: Part I. Model development. Ener Build 33(6): 613-625.

[22] Ezzouhri R, Joubert P, Penot F, Mergui S (2009) Large Eddy simulation of turbulent mixed convection in a 3D ventilated cavity: Comparison with existing data. Int J Therm Sci 48(11): 2017-2024.

[23] Berkooz G, Holmes P, Lumley JL (1991) Intermittent dynamics in simple models of the turbulent wall layer. J Fluid Mech 230: 75-95.

[24] Sirovich L (1987) Turbulence and the dynamics of coherent structures part I: coherent structures. Q Appl Math 45(3): 561-571.

[25] Alfonsi G, Primavera L (2007) The structure of turbulent boundary layers in the wall region of plane channel flow. Proc Royal Soci London A: Math Phys Eng Sci 463, 2078, 593-612.

[26] Wang Y, Yu B, Wu X, Wei J, Li F, Kawaguchi Y (2011) POD study on the mechanism of turbulent drag reduction and heat transfer reduction based on Direct Numerical Simulation. Prog Comput Fluid Dyn 11(3-4): 149-159.

[27] Yang JC, LiF C, Cai WH, Zhang HN, Yu B (2014) On the mechanism of convective heat transfer enhancement in a turbulent flow of nanofluid investigated by DNS and analyses of POD and FSP. Int J Heat Mass Trans 78: 277-288.

[28] Motlagh SY, Taghizadeh S (2016) POD analysis of low Reynolds turbulent porous channel flow. Int J Heat Fluid Flow 61: 665-676.

[29] موسائی ا (2014) مطالعه ساختمان‌های گردابه‌ای در جریان آشفته کانال حاوی میکروفیبر با استفاده از شبیه سازی مستقیم عددی. مهندسی مکانیک مدرس 93-85 :(3)14.

[30] بازدیدی تهرانی ف، موسوی س م، جدید م (2015)تحلیل خنک‌کاری لایه‌ای لبه جلویی پره توربین مدل توسط دو رهیافت DES و .LES مهندسی مکانیک مدرس 2780-260 :(8)15.‎

[31] رضائی م، مغربی م (2015) مطالعه‌ ی عددی انتقال حرارت جابه‌جایی طبیعی مزدوج در محفظه ی بسته متخلخل به روش شبکه بولتزمن. مکانیک سازه‌ها و شاره‌ها 231-217 :(2)5.

[32] علوی ن، ارمغانی ط، ایزد پناه ب (2016) انتقال حرارت جابجایی آزاد نانوسیال در محفظه L شکل بافلدار. مکانیک سازه‌ها و شاره‌ها 321-311 :(3)6.‎

[33] Wei Z, Zang B, New TH, Cui YD (2016) A proper orthogonal decomposition study on the unsteady flow behaviour of a hydrofoil with leading-edge tubercles. Ocean Eng 121: 356-368.

[34] Gomez-Ramirez D, Ekkad SV, Moon HK, Kim Y, Srinivasan R (2017) Isothermal coherent structures and turbulent flow produced by a gas turbine combustor lean pre-mixed swirl fuel nozzle. Exp Therm Fluid Sci 81: 187-201.

[35] Elhimer M, Harran G, Hoarau Y, Cazin S, Marchal M, Braza M (2016) Coherent and turbulent processes in the bistable regime around a tandem of cylinders including reattached flow dynamics by means of high-speed PIV. J Fluid Struc 60: 62-79.

[36] Mahapatra PS, Chatterjee S, Mukhopadhyay A, Manna NK, Ghosh K (2016) Proper orthogonal decomposition of thermally-induced flow structure in an enclosure with alternately active localized heat sources. Int J Heat Mass Trans 94: 373-379.

[37] Maurice G, Thiesset F, Halter F, Mazellier N, Chauveau C, Gökalp I, Kourta A (2016) Scale analysis of the flame front in premixed combustion using Proper Orthogonal Decomposition. Exp Therm Fluid Sci 73: 109-114.

[38] Kaffel A, Moureh J, Harion JL, Russeil S (2016) TR-PIV measurements and POD analysis of the plane wall jet subjected to lateral perturbation. Exp Therm Fluid Sci 77: 71-90.

[39] Sarkar S, Ganguly S, Biswas G, Saha P (2016) Effect of cylinder rotation during mixed convective flow of nanofluids past a circular cylinder. Comput Fluids 127: 47-64.

[40] Villegas A, Diez FJ (2016) Effect of vortex shedding in unsteady aerodynamic forces for a low Reynolds number stationary wing at low angle of attack. J Fluid Struc 64:138-148.

[41] Saha P, Biswas G, Mandal AC, Sarkar S (2017) Investigation of coherent structures in a turbulent channel with built-in longitudinal vortex generators. Int J Heat Mass Trans 104: 178-198.

[42] Lengani D, Simoni D, Ubaldi M, Zunino P, Bertini F (2017) Analysis of the Reynolds stress component production in a laminar separation bubble. Int J Heat Fluid Flow 64: 112-119.

[43] Chen X, Xia H (2017) A hybrid LES-RANS study on square cylinder unsteady heat transfer. Int J Heat Mass Trans 108: 1237-1254.

[44] Lengani D, Simoni D, Ubaldi M, Zunino P, Bertini F (2017) Experimental study of free-stream turbulence induced transition in an adverse pressure gradient. Exp Therm Fluid Sci 84: 18-27.

[45] Bisoi M, Das MK, Roy S, Patel DK (2017) Large eddy simulation of three-dimensional plane turbulent free jet flow. Euro J Mech B.

[46] Sirovich L, Ball KS, Handler RA (1991) Propagating structures in wall-bounded turbulent flows. Theor Comput Fluid Dyn 2(5-6): 307-317.

[47] Germano M, Piomelli U, Moin P, Cabot WH (1991) A dynamic subgrid‐scale eddy viscosity model. Physics Fluid A: Fluid Dynamic (1989-1993) 3(7): 1760-1765.