Identification of LRB isolators using a modified normalized Bouc-Wen model

Authors

Abstract

Due to the inherent dynamic characteristics of the restoring ‎force of‎ the‎ lead- rubber ‎bearings ‎(LRBs), ‎seismic ‎behavior ‎of ‎the base-isolated structures are ‎highly ‎affected. Applying the right model based on the non-linear role of the isolator is of utmost importance. This ‎paper presents a compound form, based on the modified ‎normalized ‎Bouc-Wen ‎model, to show the LRB isolator’s behavior. This model allows to identify the LRB isolators more accurately by define its phenomenon in two linear and nonlinear phases. Based on a sinusoidal excitation with large enough amplitude, the essential parameters of the model can be realized with a unique test. The ‎identification process and the validation ‎of ‎the model have ‎been ‎carried ‎out ‎using a ‎black ‎box ‎model ‎of an‎ ‎LRB ‎isolator ‎in a‎ ‎smart ‎base-isolated ‎benchmark ‎building scheme as a‎ ‎virtual ‎laboratory ‎experiments. ‎The ‎results ‎show a‎ ‎good ‎level ‎of ‎accuracy ‎for the ‎identified ‎model and make it a proper candidate for LRB isolators representation.

Keywords

Main Subjects


[1] Buckle IG, Mayes RL (1990) Seismic isolation history, application and performance-a world view. Earthq Spectra 6: 161-201.
[2] Naeim F, Kelly JM (1999) Design of seismic isolated structures: From theory to practice. 1st edn. Hoboken. John Wiley & Sons.
[3] Jangid RS (2007) Optimum lead-rubber isolation bearings for near-fault motions‌. Eng Struct 29: 2503-2513.
[4] Kelly JM (1986) A seismic base isolation: Review and bibliography. Soil Dyn Earthq Eng‌  110: 186-203.
[5] Jangid RS, Datta TK (1995) Seismic behaviour of base isolated building-A state-of-the-art-review. P I Civil Eng-Str B 110(2): 186-203.
[6] Tyler RG, Robinson WH (1984) High-strain tests on lead-rubber bearings for earthquake loadings. B New Zealand Nat Soc Earthq Eng 17: 90-105.
[7] Wen YK (1976) Method for random vibration of hysteretic systems. J Eng Mech Div 102(2): 249-263.
[8] Wen YK (1980) Equivalent linearization for hysteretic systems under random excitations‌. J Appl Mech-T ASME 47(1): 150-154.
[9] Zhou L, Wu SY, Yang JN (2008) Experimental study of an adaptive extended kalman filter for structural damage identification. J Infrastruct Syst 14(1): 42-51.
[10] Lin JW, Betti R, Smyth WA, Longman RW (2001) On-line Identification of nonlinear hysteretic structural system using a variable trace approach. Earthquake Eng Struc 30: 1279-1303.
[11] Loh CH, Lin CY, Huang CC (2000) Time domain identification of frames under earthquake loadings. J Eng Mech-ASCE 126(7): 693-703.
[12] Yang JN, Lin S (2004) On-line identification of nonlinear hysteretic structures using an adaptive tracking technique‌. Int J Nonlinear Mech 39: 1481-1491.
[13] Hoshiya M, Maruyama O (1987) Kalman filtering of versatile restoring systems. 1st edn. Stochastic Approaches in Earthquake Engineering Lecture Notes in Engineering. Springer-Verlag Berlin Heidelberg, Florida.
[14] Lin L-S, Zhang Y (1994) Nonlinear structural identification using extended Kalman filter. Comput Struct 52: 757-764.
[15] Loh CH‌, ‌Chung ST (1998). A three-stage identification approach for hysteretic systems. Earthquake Eng Struc 22: 1435-1459.
[16] Ramallo JC‌, ‌Yoshioka H‌, ‌Spencer BF (2004) A two-step identification technique for semiactive control system. Struct Control Hlth 11: 273-289.
[17] Lil SJ‌, ‌Suzuki Y‌, ‌Noori M (2004) ‌Identification of hysteretic system with slip using bootstrap filter. Mech Syst Signal Pr 18: 781-795.
[18] Ni YQ, Ko JM, Wong CW (1998) Identification of nonlinear hysteretic isolators from periodic vibration tests. J Sound Vib 217(4): 737-756.
[19] Tan RY, Huang MC (2000) System identification of a bridge with lead-rubber bearings. Comput Struct 74: 267-280.
[20] Furukawa T, Ito M, Izawa K, Noori MN, ASCE M (2005) System Identification of base-isolated building using seismic response data. J Eng Mech-ASCE 131: 268-275.
[21] Qiang Y, Li Z, Xinming W, ASCE M (2010) Parameter identification of hysteretic model of rubber-bearing based on sequential nonlinear least-square estimation‌. Earthq Eng Eng Vib 9(3): 375-383.
[22] De-wei S, Zhi-gang C, Guang-yu Z, Berhard P (2011) Modeling and parameter identification of amplitude- and frequency-dependent rubber isolator. J Cent South Univ Technol‌ 18: 672-678.
[23] Ying L, Ming H (2013) Identification of the nonlinear properties of rubber-bearings in base-isolated buildings with limited seismic response data. Technol Sci 5:1224-1231.
[24] Yu Y, Li Y, Li J (2014) Parameteridentification of an improved Dahl model for magnetorheological elastomer base isolator based on enhanced genetic algorithm. In: Proceedings of 23rd Australasian conference on the mechanics of structures and materials, Byron Bay, Australia.
[25] Yu Y, Li Y, Li J (2014) Parameter identification of a novel strain stiffening model for magnetorheological elastomer base isolator utilizing enhanced particle swarm optimization. J Intel Mat Syst Str, in press.
[26] Yu Y, Li Y, Li J (2015) Parameter identification and sensitivity analysis of an improved LuGre friction model for magnetorheological elastomer base isolator. Meccanica 50: 2691-2707.
[27] مهرکیان ب، بهار آ، چائی بخش ع (1394) بهینه‌سازی ژنتیکی محاسبات سخت در مقابل محاسبات نرم برای مدل‌سازی میراگر MR و ارائه یک مدل شبه استاتیکی وارون­پذیر. نشریه علمی پژوهشی امیرکبیر-عمران و محیط‌زیست 50-33 :(2)47.
[28] رمضانی م، زهرائی س م (1395) پارامترهای بهینه میراگر جرمی تنظیم‌شده برای سازه‌های بلند به کمک شبکه‌های عصبی مصنوعی. مجله علمی پژوهشی عمران مدرس  121-109 :(4)16.
[29] معافی س ع، معصوم نژاد م (1395) تعیین بهینه زمان سوئیچینگ کنترلر بنگ-بنگ برای سیستم­ نامعین جرثقیل سقفی. مجله مهندسی مکانیک مدرس 186-178 :(5)16.
[30] Ikhouane F‌, ‌Rodellar J (2007) ‌System with hysteresis‌: ‌Analysis‌, ‌identification and control using the Bouc-Wen model‌. ‌John Wiley & Sons‌, ‌Ltd.
[31] Bahar A‌, ‌Pozzo F‌, ‌Acho L‌, ‌rodellar J, Barbat A (2010) Parameter identification of large-scale magnetorheological dampers in a benchmark building‌. Comput Struct 88: 198-206.
[32] Rodriguez A‌, ‌Iwata N‌, ‌Ikhouane F‌, ‌Rodellar J (2009) Model identification of a large-scale magnetorheological fluid damper. Smart Mater Struct 18(1): 015010 ‌.
[33] Narasimhan S‌, ‌Nagarajaiah S‌, ‌Johnson EA‌, ‌Gavin HP (2000) Smart base-isolated benchmark building. ‌Part 1‌: ‌problem definition. Struct Control Hlth 13: 573-588‌.