Numerical simulation of radiance effects on the aerodynamic heating of ablative nose with VSL-VBLS method

Authors

Abstract

One of the basic parameter to design the hypersonic noses is the induced radiative heating to wall. During flight trajectory, the magnitude of aerodynamic heating changes. To accurate estimation of it, the different methods, is presented which, the numerical solution of navier stocks, chemical reactions, ablative modeling, species conservation, turbulence modeling, heat transfer equations with the finite volume algorithms is perfect method. Utilizing these solvers for flight trajectory require the high computational memory. Therefore, the finite difference method have been used, and the equations have been translated to curvature coordinate by mapping terms. The non propagation of data from flow downstream is the requirement to select the type of the space marching solver, and combination of viscous shock layer at body and similarity of viscous boundary layer at stagnation point methods are pass the mentioned requirement by using the lucidity assumption of the mixture elements. With utilizing this method, the radiative heating results of this research have been the excellence compliance with similar researchs. The results deviation started at Mach number greather than 40 but, in comparative to test results, the behavior of radiative heating variations in accordance with the curvature distance was more logical than the similar researchs. So, at Mach number smaller than 6, the radiative heating, in comparative to conduction and convection heating, is dispensable.

Keywords

Main Subjects


[1]  Anderson JD (1989) Hypersonic and high temperature gas dynamics. 2nd edn. 978-964-2751-04-4, New York: 25-346.
[2]  Benjamine J, Garland A, Swanson G (1957) Aerodynamic heating and boundary-layer transition on a 1/10-power nose shape in free flight at mach numbers up to 6.7. NASA Research Memorandum Bressette Langley Aeronautical Laboratory NASA: 5-17.
[3]  Chauvin L, Katherine C(1957)  Boundary-layer transition and heat-transfer measurements from flight tests of blunt and sharp  cones at mach numbers from 1.7 to 4.7. NASA RM L57DO4: 12-27.
[4]  Howard S, Walter E (1957) Heat-Transfer and pressure distribution on six blunt noses at a mach number of 2. NASA Research Memorandum Bressette Langley Aeronautical Laboratory NASA: 21-28.
[5]  Kumar A(1980) Laminar and turbulent flow solutions with radiation and ablation injection for jovian entry. AIAA J 90(5): 80-88.
[6]  Sutton K (1985) Air radiation revisited in thermal design of aeroassisted orbital transfer vehicles. AIAA J 96(12): 419-441.
[7] رحمانپور م،  ابراهیمی ر، شمس م (1385) حل میدان با احتساب واکنش‌های شیمیایی غیرتعادلی به منظور محاسبه چگالی الکترونی اطراف یک جسم با دماغه پخ. دهمین کنفرانس دینامیک شاره‌ها، یزد، دانشگاه یزد، دانشکده مهندسی مکانیک.
[8]  Gollan RJ (2011) Numerical modeling of radiating superorbital flows. 3th edn. The University of Queensland Brisbane 4072, Australia: 29-37.
[9]  Potter, DF (2011) Modelling of radiating shock layers for atmospheric entry at Earth and Mars. Scientaa AC Abore, s4029188 phD Thesis: 48-82.
[10] کریمیان ر، غفاریان م، عزیزی ح (1392) حل جریان ماورا صوت روی بدنه موشک با در نظر گرفتن اثرات هوای دما بالا جهت تعیین گرمایش آیرودینامیکی. طرح پژوهشی دانشگاه صنعتی امیرکبیر، دانشکده مهندسی هوا و فضا.
[11] Benjamin S, Roy H, Paul HS, Baumanb  T , Oliver TA (2014) Modeling hypersonic entry with the fully-implicit Navier–Stokes (FIN-S) stabilized finite element flow solver. Comput Fluids 92(4): 281-292. 
[12] Ekert ER (1986) Engineering relations for heat transfer and friction in high-velocity laminar and turbolent boundral-layer flow over surfaces with constant pressure and temperature. Trans ASME 78(6): 127-131.
[13] Zein TF (1999)  Heat transfer in the melt layer of a simple ablation model. J Thermophys Heat Tr 13(4): 58-72.
[14] Miner EW (1975) Computer user’s guide for a chemically reacting viscous shock layer code, NASA CR-2551: 5-29.
[15] Bryknia G, Scott S (1998) An approximate axisymmetric viscous shock layer aeroheating method for three-dimensional bodies. AIAA NASA/TM198-207890: 4-17.
[16] Chen YK, Milos FS (2012)  Finite-rate ablation boundary conditions for carbon-phenolic heat-shield. NASA Ames Research Center, Moffett Field, CA 94035-1000: 8-34.
[17] Park C (2002) Calculation of stagnation point heat transfer for pioneer venus probes. Proposed NASA Technical Memorandum: 12-26.
[18] هولمن ج، تاجور ح‌ح (1989) انتقال حرارت. چاپ پنجم. کانون کتاب دانشگاهی، مرکز خدمات فرهنگی سالکان: 240-354.
[19] Anderson JD (1967)  Nongray Radiative transfer effects on the radiating stagnation region shock layer and stagnation point heat transfer. NOLTR U.S. Naval Ordnance Laboratory, White Oak  MD: 67-104.