Variations of the contact line kinetics during the evaporation of a water droplet on solid surface

Author

Abstract

Droplet evaporation plays a vital role in various engineering fields, such as air/fuel-premixing, crystal growth, painting, inkjet printing and the applications of biology and drug discovery. Despite much research, the mechanism of the contact line kinetics in droplet evaporation is still not well understood. The main problem in understanding the drop kinetics concern to description of the contact line movement on the solid surface, where condition of hydrodynamic no-slip is contradicted. In this study, a physical justification is presented for the contact line slip in which the origin of the slip, using the molecular model of the flow near to a wall, is attributed to induced momentum gradient between the liquid / gas interface. As a result of that, approaching toward the liquid phase, the slip is reduced and the classical boundary condition of the no-slip is dominated. Using the slip/no-slip process in the contact line, a physical model for the second stage of evaporation of droplets on solid surfaces is proposed, where the droplet volume is reduced in constant contact angle and its validity is confirmed by comparison with experimental data.

Keywords


[1] Bourgks-Monnier C, Shanahan MER (1995) Influence of evaporation on contact angle. Langmuir 11: 2820-2829.
[2] Shanahan MER (2001) Spreading of water: Condensation effects. Langmuir 17:8229-8235.
[3]  Hu H, Larson RG (2002) Evaporation of a sessile droplet on a substrate. J Phys Chem B 106:1334-1344.
[4] Hu H, Larson RG (2006) Marangoni effect reverses coffee-ring depositions. J Phys Chem B 110:7090-7094.
[5]  Girard F, Antoni M, Faure S, Steinchen A (2006) Evaporation and marangoni driven convection in small heated water droplets. Langmuir 22:11085-11091.
[6]  Kim J, Ahn S, Kim JH, Zin W (2007) Evaporation of water droplets on polymer surfaces. Langmuir 23:6163-6169.
[7]  Kim J, Ahn S, Kim JH, Kim JS, Cho K, Jung JC, Chang T, Ree M, Zin W (2008) Evaporation of sessile droplets of dilute aqueous solutions containing Sodium n-Alkylates from polymer surfaces: Influences of Alkyl length and concentration of solute. Langmuir 24:11442-11450.
[8] کریم دوست یاسوری الف، پسندیده فرد م (1391) مطالعه تجربی و تحلیلی دینامیک تبخیر سطحی قطرات آب بر روی سطوح مختلف. نشریه علوم کاربردی و محاسباتی در مکانیک 98-81 :(2)23.
[9] کریم دوست یاسوری الف، پسندیده فرد م (1393) بررسی تجربی اثرات موئینگی در تبخیر سطحی قطرات آب. نشریه علوم کاربردی و محاسباتی در مکانیک 13-1 :(2)25.
[10] Li Q, Zhou P, Yan HJ (2016) Pinning–depinning mechanism of the contact line during evaporation on chemically patterned surfaces: A lattice Boltzmann study. Langmuir 32 (37): 9389-9396.
[11] Wang F, Wu H (2015) Molecular origin of contact line stick-slip motion during droplet evaporation. Sci Rep 5: 17521.
[12] Roisman IV, Opfer L, Tropea C, Raessi M, Mostaghimi J, Chandra S (2008) Drop impact onto a dry surface: Role of the dynamic contact angle. Colloid Surface A 322:183-191.
[13] Šikalo S, Wilhelm HD, Roisman IV, Jakirlic S, Tropea C (2005) Dynamic contact angle of spreading droplets: Experiments and simulations. Phys Fluid 17:062103(1-13).
[14] Bayer I, Megaridis CM (2006) Contact angle dynamics in droplets impacting on flat surfaces with different wetting characteristics. J Fluid Mech 558: 415-449.
[15] Blake TD, Haynes JM (1969) Kinetics of liquid/liquid displacement. J Colloid Interface Sci 30(3).
[16] Cox RG (1986) The dynamics of the spreading of liquids on a solid surface. Part 1, Viscous Flow, J Fluid Mech 168:169-194.
[17] Petrov PG, Petrov JG (1992) A combined molecular-hydrodynamic approach to wetting kinetics. Langmuir 8:1762-176.
[18] Ranabothu SR, Karnezis C, Dai LL (2005) Dynamic wetting: Hydrodynamic or molecular-kinetic? J Colloid Interface Sci 288: 213-221.
[19] Pasandideh-Fard M, Qiao YM, Chandra S, Mostaghimi J (1996) Capillary effects during droplet impact on a solid surface. Phys Fluid 8:650-659.
[20] Ruckenstein E (2002) Microscopic origin of macroscopic wetting. Colloid Surface A 206:3-10.
[21] Huh C, Scriven LE (1971) Hydrodynamic model of steady movement of a solid/liquid/fluid contact line. J Colloid Interface Sci 35(1):85-101.
[22] Voinov OV (1976) Hydrodynamics of wetting. J Fluid Mech 11:714-721.
[23] De Gennes PG (1985) Wetting: Statics and dynamics. Rev Mod Phys 57(3).
[24] Lee J, Sears FW, Turcotte DL (1963) Statistical thermodynamics. Reading, Mass., Addison-Wesley Publishing Co.,Inc.,p. 81.
[25] John JEA (1984) Gas dynamic. Dean, School of Engineering, University of Massachusetts, 2nd ed.
[26] Jennings S (1988) The mean free path in air. J Aerosol Sci 19:159-167.
[27] Ruckenstein E (1992) Dynamics of partial wetting. Langmuir 8:3038-3039.
[28] Ruckenstein E, Dunn CS (1977) Slip velocity during wetting of solids. J Colloid Interface Sci 59(1).
[29] Sefiane K, Tadrist L (2006) Experimental investigation of the de-pinning phenomenon on rough surfaces of volatile drops. Int Commun Heat Mass Trans 33:482–490.
[30] Foister RT (1990) The kinetics of displacement wetting in liquid/liquid/solid systems. J Colloid Interface Sci 136(1).
[31] De Ruijter MJ, Blake TD, De Coninck J (1999) Dynamic wetting studied by molecular modeling simulations of droplet spreading. Langmuir 15: 7836-7847.
[32] Shin DH, Lee SH, Jung J, Yoo JY (2009) Evaporating characteristics of sessile droplet on hydrophobic and hydrophilic surfaces. Microelectron Eng 86:1350-1353.