Second Law Analysis of Micropolar Fluid Flow Between Two Inclined Parallel Plates

Authors

Abstract

In this study, the heat transfer and the entropy generation is investigated for micropolar fluid flow through an inclined channel of parallel plates with constant pressure gradient. The lower plate is maintained at constant temperature and upper plate at a constant heat flux. The governing equations which are continuity, momentum and energy are solved numerically by Wolfram Mathematica 11 software. The velocity, microrotation and temperature profiles are used to evaluate the entropy generation number. The effect of characteristic parameters is discussed on velocity, temperature, microrotation, entropy generation and Bejan number in different diagrams. The results reveal that the entropy generation number increases with the increase in Brinkman number. The nonlinear parameter affected the velocity, microrotation, temperature, entropy generation and Bejan number diagrams. The result shows that the entropy generation number increased with increasing the brinkman number. It reduced with increasing the values of nonlinear parameter, Prandtl number and Reynolds number. Also the effect of pressure gradient is investigated on velocity, temperature, microrotation, entropy generation and Bejan number in different diagrams.

Keywords

Main Subjects


[1] Bejan A (1979)  A study of entropy generation in fundamental convective heat transfer. J Heat Trans-T ASME 101(4): 718-725.
[2] Bejan A (1982) Second law analysis in heat transfer and thermal design. Adv Heat Tran 15: 1-58.
[3] Bejan A (1996) Entropy generation minimization. CRC Press, NewYork.
[4] Havzali M, Arikoglu A, Komurgoz G, Keser HI, Fraser RO (2008) Analytical numerical analysis of entropy generation for gravity-driven inclined channel flow with initial transition and entrance effects. Phys Scr 78(4): 045401.
[5] Komurgoz G, Arikoglu A, Turker E, Ozkol I (2010) Second-law analysis for an inclined channel containing porous-clear fluid layers by using the differential transform method. Numer Heat Tr A-Appl 57(8): 603-623.
[6] Famouri M, Hooman K (2008) Entropy generation for natural convection by Heated partitions in  cavity. Int Commun Heat Mass 35(4): 492-502.
[7] Shahi M, Mahmoudi AH, Honarbakhsh Raouf A (2011) Entropy generation due to natural convection cooling of nanofluid. Int Commun Heat Mass 37(7): 972-983
[8] Cho C, Chen C, Chen K (2013) Natural convection heat transfer and entropy generation in Wavy-wall enclosure containing water-based nanofluid. Int J Heat Mass Tran 61: 749-758.
[9] Das S, Jana RN (2014) Entropy generation due to MHD flow in a porous channel with Navier slip. Ain Shams Eng J 5: 575-584.
[10] Chen BS, Liu CC (2014) Heat transfer and entropy generation in fully-developed mixed convection nanofluid flow in vertical channel. Int J Heat Mass Tran 79: 750-758.
[11] فلاح ک، رهنی م، محمدزاده ع، نجفی م (1394) انتقال حرارت جابجایی اجباری عبوری از یک سیلندر دایروی ساکن در سیالات غیر نیوتنی. مجله علمی پژوهشی مکانیک سازه­ها و شاره­ها242-229 :(4)5.
[12] Hazbavi A (2016) Second law analysis of magnetorheological rotational flow with viscous dissipation. J Therm Sci Eng 8(2).
[13] Mahmud S, Fraser RA (2002) Second law analysis of heat transfer and fluid flow inside a cylindrical annular space. Exergy 2(4): 322-329.
[14] Iman Z (2008) On the importance of thermal boundary conditions in heat transfer and entropy generation for natural convection inside a porous enclosure. Int J Therm Sci 47: 339-346.
[15] Antar MA, El-Shaarawi MA (2009) The entropy generation for a rotating sphere under uniform heat flux boundary condition in forced-convection flow. Int J Numer Method H 19(3/4): 396-410.
[16] Butt AS, Munawar S, Ali A, Mehmood A (2012)  Entropy generation in hydrodynamic slip flow over a vertical plate with convective boundary. J Mech Sci Technol 26(9): 2977-2984.
[17] Anand V (2014) Slip law effects on heat transfer and entropy generation of pressure driven flow of a power law fluid in a microchannel under uniform heat flux boundary condition. Energy 76: 716-732.
[18] Mostafa S, Ali K (2014) Convective heat transfer and entropy generation analysis on Newtonian and non-Newtonian fluid flows between parallel-plates under slip boundary conditions. Int J Heat Mass Transfer 70: 664-673.
[19] Ibanez G (2014) Entropy generation in MHD porous channel with hydrodynamic slip and convective boundary conditions. Int J Heat Mass Tran 80: 274-280.
[20] Eringen AC (1966) The theory of micropolar fluids. J Math Mech 16: 1-18.
[21] Ramana Murthy JV, Srinivas J (2014) First and second law analysis for the MHD flow of two immiscible couple stress fluids between two parallel plates. Heat Tran Asian Res 44(5): 468-487.
[22] Jangili S, Murthy JV (2015) Thermodynamic analysis for the mhd flow of two immiscible micropolar fluids between two parallel plates. FHMT 6(1): 1-11.
[23] Srinivasacharya D, Hima Bindu K (2016) Entropy generation in a micropolar fluid flow through an inclined channel. AEJ 55(2).
[24] قنبری م، حسین­پور س، رضازاده ق، (1393) اثرات محیط سیال روی ارتعاشات رزوناتور میکروتیر با استفاده از تئوری میکروپولار. مجله علمی پژوهشی مهندسی مکانیک مدرس 210-205 :(10)14.
[25] Ariman T, Cakmak AS (1968) Some basic viscous flows in micropolar fluids. Rheol Acta 7(3): 236-242.
[26] Kucaba-Pietal A (2004) Microchannels flow modeling with the micro-polar fluid theory. Bull Pol 53: 209-214.