Numerical Solution of Natural Convective Heat Transfer of Al2O3/Water Nanofluids in a Square Cavity with Modified Circular Corners

Authors

Abstract

In this paper, Natural convection heat transfer of Al2O3/Water nanofluid in a square enclosure has been studied numerically. To do so, corners of square enclosure were modified by rounding its edges. According to the new variable properties model, dynamic viscosity and thermal conductivity depend on the diameter of the particles, concentration and temperature. Therefore, the enclosure has been bounded by adiabatic top and bottom horizontal walls and isothermal side walls. The governing equations of continuity, momentum and energy have been developed for nanofluid. Finite Volume Method (FVM) with structured grids has been applied to solve these equations. The discrete equations have been written by the discrete method in time and space using FORTRAN codes. The Grashof and Prandtl numbers have been studied by changing the parameters such as non-uniform distribution of nanoparticles, average diameter and volume fraction of nanoparticles in the various geometries. The results indicated that nanofluid has significant positive effect on convective heat transfer coefficient and the Nusselt number. Also, the Nusselt number for increase , and for Grashof numbers of , and , respectively. Furthermore, by increasing R parameter and nano particle volume fraction, Nusselt number increased.

Keywords

Main Subjects


[1]  Choi SU, Zhang ZG, Keblinski P (2004) Nanofluids in encyclopedia of nanoscience and nanotechnology. American Scientific Publishers 6: 757-773.
[2]  Taheri Y, Ziapour BM, Alimardani K (2013) Study of an efficient compact solar water heater. Energ Convers Manage 70: 187-193.
[3]  Rezvani A, Valipour MS, Biglari M (2015) Numerical study of entropy generation for natural convection in cylindrical cavities. Int J Heat Mass Tran 3(2): 89-99.
[4]  Ziapour BM, Dehnavi R (2012) A numerical study of the arc-roof and the one-sided roof enclosures based on the entropy generation minimization. Comput Math Appl 64(6): 1636-1648.
[5]  Ziapour BM, Dehnavi R (2011) Finite-volume method for solving the entropy generation due to air natural convection in -shaped enclosure with circular corners. Math Comput Model 54: 1286-1299.
[6]  Dehnavi R, Rezvani A (2012) Numerical investigation of natural convection heat transfer of nanofluids in a Γ shaped cavity. Superlattice Microst 52: 312-325.
[7]  Salari M, Rezvani A, Mohammadtabar A, Mohammadtabar M (2015) Numerical study of entropy generation for natural convection in rectangular cavity with circular corners. Heat Tran Eng 36: 186-199.
[8]  Behseresht A, Noghrehabadi A, Ghalambaz M (2014) Natural-convection heat and mass transfer from a vertical cone in porous media filled with nanofluids using the practical ranges of nanofluids thermo-physical properties, Chem Eng Res Des 92: 447-452.
[9]  Haddad Z, Abu-Nada E, Oztop HF, Mataoui A (2012) Natural convection in nanofluids: Are the thermophoresis and Brownian motion effects significant in nanofluid heat transfer enhancement. Int J Therm Sci 57: 152-162.
[10] Xuan Y, Li Q (2000) Heat transfer enhancement of nanofluids. Int J Heat Fluid Flow 21: 58-64.
[11] Eastman J, Choi U, Li S, Thompson L, Lee S (1996) Enhanced thermal conductivity through the development of nanofluids. in MRS proceedings.
[12] Lai FH, Yang YT (2011) Lattice Boltzmann simulation of natural convection heat transfer of Al2O3/water nanofluids in a square enclosure. Int J Therm Sci 5: 1930-1941.
[13] Hwang KS, Lee JH, Jang SP (2007) Buoyancy-driven heat transfer of water-based Al2O3 nanofluids in a rectangular cavity. Int J Heat Mass Tran 50: 4003-4010.
[14] Li CH, Peterson G (2006) Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids). J Appl Phys 99: 084314.
[15] زحمتکش الف (2014)  تولید آنتروپی نانوسیالات در همرفت طبیعی در محفظه‌های متخلخل مستطیل شکل. مجله مکانیک سازه‌ها و شاره‌ها 184-171 :4.
[16] جمشید اصلی د، عباسی ع (2013) شبیه‌سازی عددی دوفازی جریان و انتقال حرارت نانوسیال‌ها در میکرو چاه حرارتی با استفاده از مدل مخلوط همگن. مجله مکانیک سازه‌ها و شاره‌ها 63-51 :3.
[17] Dostdar MM, Yekani M (2017) Numerical study of mixed convection of nano fluid in a lid-driven cavity containing hot obstacles. Aerospace Mechanics Journal 12: 67-78.
[18] Zare Ghadi A, Sadegh Valipour M (2014) Numerical study of hydro-magnetic nanofluid mixed convection in a square lid-driven cavity heated from top and cooled from bottom. Transp Phenom Nano Micro Scales 2: 29-42.
[19] کارگر شریف آباد هـ، فلسفی م (2015) مدل سازی عددی انتقال حرارت جابجایی داخلی سیال مغناطیسی تحت میدان مغناطیسی منقطع و فرکانس‌های زمانی متفاوت. مجله مهندسی مکانیک مدرس 98-91 :15.
[20] Hemmat Esfe SSM, Mir-Talebi SS (2014) Influence of Variable properties nanofluid on combined convection heat transfer in a two sided lid-driven enclosure with sinusoidal temperature profile. Aerospace Mechanics Journal 10: 51-63.
[21] Chen W, Liu W, Liu B (2006) Numerical and experimental analysis of heat and moisture content transfer in a lean-to greenhouse. Energ Build 38: 99-104.
[22] Chen W, Liu W (2006) Numerical simulation of the airflow and temperature distribution in a lean-to greenhouse. Renew Energ 31: 517-535.
[23] Sharma P, Tiwari G, Sorayan V (1999) Temperature distribution in different zones of the micro-climate of a greenhouse: a dynamic model. Energy Convers Manage 40: 335-348.
[24] Impron I, Hemming S, Bot G (2007) Simple greenhouse climate model as a design tool for greenhouses in tropical lowland. Biosystems Eng 98: 79-89.
[25] Lin KC, Violi A (2010) Natural convection heat transfer of nanofluids in a vertical cavity: Effects of non-uniform particle diameter and temperature on thermal conductivity. Int J Heat Fluid Flow 31: 236-245.
[26] Hamilton R, Crosser O (1962) Thermal conductivity of heterogeneous two-component systems. Ind Eng Chem Fund 1: 187-191.
[27] Xu J, Yu B, Zou M, Xu P (2006) A new model for heat conduction of nanofluids based on fractal distributions of nanoparticles. J Phys Appl Phys  39: 4486.
[28] Chorin AJ (1967) A numerical method for solving incompressible viscous flow problems. J Comput Phys 2: 12-26.
[29] Chorin AJ (1997) A numerical method for solving incompressible viscous flow problems. J Comput Phys 135: 118-125.
[30] Khanafer K, Vafai K, Lightstone M (2003) Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. Int J Heat Mass Tran 46: 3639-3653.
[31] Oliveski RDC, Macagnan MH, Copetti JB (2009) Entropy generation and natural convection in rectangular cavities. Appl Therm Eng 29: 1417-1425.
[32] Vahl Davis G de (1983) Natural convection of air in a square cavity: a bench mark numerical solution. Int J Numer Meth Fluid 3: 249-264.