Evaluation of Effect of Taper Ratio on Aerodynamic Characteristics of MAVs with Inspired from Insects Wing

Authors

Abstract

In this investigation, a numerical method based on potential flow has been developed for aerodynamic analysis of morphing MAVs. At first, results of this method are validated with experimental data and then, effect of taper ratio greater than one has been studied on aerodynamic characteristic. Results show that increasing taper ratio, whether is the range of zero to one or bigger one, cause increasing lift coefficient and improving performance of the MAVs. The only disadvantage of taper ratio of bigger one is appearing large pitching moments. Of course, in MAVs is negligible due to the small size. In this study, also a mechanism for creation of different taper ratios has been discussed. Finally, the modeling of insect wings hav been presented for use in the MAVs. The aerodynamic coefficients were compared with conventional wings. The results show a decrease in slope Cm - CL Curve and this represents an increase in longitudinal stability MAV.

Keywords

Main Subjects


[1] Lin SH, Hsiao FY, Chen CL (2010) Trajectory control of flapping-wing MAV Using vision-based navigation. In American Control Conference, AACC, IEEE, 2010.
[2] Sanders B, Crowe R, Garcia E (2004) Defense advanced research projects agency smart materials and structures demonstration program overview. J Intel Mat Syst Str 15(1): 227-233.
[3] Patel SC, Majji M, Koh BS, Junkins JL, Rediniotisx O (2005) Morphing wing: A demonstration of aero servo elastic distributed sensing and control. Tec. report, Texas Institute.
[4] Sun D, Wu H, Lam CM, Zhu R (2006) Development of a small air vehicle based on aerodynamic model analysis in the tunnel tests. Mechatronics 16(1): 41-49.
[5] Pawlowski KJ, Belvin HL, Raney DL, Su J, Harrison JS, Siochi EJ (2003) Electrospinning of a micro air vehicle wing skin. Polymer 44(4): 1309-1314.
[6] Wakayama S, Kroo I (1995) Subsonic wing planform design using multidisciplinary optimization. J Aircraft 32(4): 746-753.
[7] Shields M, Mohseni K (2012) Effects of sideslip on the aerodynamics of low-aspect-ratio low-reynolds-number wings. AIAA50(1): 85-99.
[8] Boschetti PJ (2008) Increasing the Lift–drag ratio of an unmanned aerial vehicle using local twist. J Aircraft 45(1): 10-15.
[9] Richard E, Wiggins W (1952) Wind-tunnel investigation of the aerodynamic characteristics in pitch of wing-fuselage combinations at high subsonic speeds. Tec Note, NACA, RM L52A29.
[10] دستورانی هـ، جوارشکیان م‌ح (1391) بررسی ایرودینامیکی جریان پتانسیل روی هواپیماهای بال و بدنه یکپارچه و مقایسه آن با هواپیماهای معمولی رایج. اولین کنفرانس ایرودینامیک و هیدرودینامیک، تهران.
[11] دستورانی هـ، جوارشکیان م‌ح (1391) بررسی جریان غیر لزج حول بال‌های قابل انعطاف (اثر پیچش روی مشخصه‌های آیرودینامیکی). اولین کنفرانس ایرودینامیک و هیدرودینامیک، تهران.
[12] دستورانی هـ، جوارشکیان م‌ح (1392) بررسی تاثیر وجود، موقعیت و ارتفاع قرارگیری بالک جلو روی ضرایب آیرودینامیکی هواپیما. مجله مکانیک سازه‌ها و شاره‌ها 3(3): 67-81.
[13] Weissinger J (1947) The Lift distribution of swept-back wings. NACA TM-1120.
[14] Glauert H (1948) The elements of aerofoil and airscrew theory. 2ed edn. Cambridge, England.
[15] Robinson A, Laurmann JA (1956) Wing theory. 3rd edn. Cambridge, England.
[16] Rubbert PE (1964) Theoretical characteristics of arbitrary wings by a non-planar vortex lattice method. Doc. No. D6-9244, Boeing Co.
[17] دستورانی هـ (1391) بررسی جریان پتانسیل روی پهپادها و ریزپهپادها با پیکربندی‌های عملیاتی. پایان‌نامه کارشناسی ارشد، دانشگاه فردوسی مشهد.
[18] Lamar J (2012) A career in vortices and edge forces. Aeronaut J 116(1176): 101-152.
[19] Wisnoe W, Nasir REM, Kuntjoro W, Mamat AMI (2009) Wind tunnel experiments and CFD analysis of Blended WingBody (BWB) Unmanned aerial vehicle. 13th International Conference on Aerospace Sciences & Aviation Technology, ASAT- 13.