forced convective heat transfer of cu-water nanofluid over a constant surface temperature wedge

Authors

Abstract

In this paper, the forced convective heat transfer of cu-water nanofluid over a wedge is investigated numerically. It is assumed that the flow of nanofluid is two-dimensional, laminar and incompressible. The boundary layer approximations are used to simplify the equations of momentum and energy. For solving the differential equations of momentum and energy, the similarity solution and the numerical Keller-Box method have been used. The effects of volume fraction of nanoparticles and wedge angle on the flow field and heat transfer rate are investigated. Numerical results for the dimensionless velocity and temperature profiles, the local friction coefficient and local Nusselt number are obtained. With the addition of copper nanoparticles , the hydrodynamic boundary layer thickness decreases and the thermal boundary layer thickness increased. The results indicate that the addition of nanoparticles increases the friction factor and Nusselt number. Also, increasing the wedge angle has the same effect on the friction factor and Nusselt number

Keywords

Main Subjects


[1] آقانجفی س، سعیدی ع (1392) حل عددی اثر میدان مغناطیسی یکنواخت بر انتقال حرارت جابجایی آزاد از روی صفحه‌ای عمودی. مجله علمی پژوهشی مکانیک سازه‌ها و شاره‌ها  75-65 :(2)3.
[2] تطهیری غ‌ر، پوریوسفی غ‌ح، دوست محمودی ع‌ر، میرزایی م (1392) بررسی تجربی اثر مانع دی الکتریک در سرعت القایی در لایه مرزی هوای ساکن با مقایسه باد کرونا پلاسمای DBD جریان مستقیم و متناوب. مجله علمی پژوهشی مکانیک سازه‌ها و شاره‌ها 110-103 :(4)3.
[3] فلاح پور ن، حقیری ع، مانی م، کلانتری م ح (1394) بررسی تجربی لایه مرزی روی یک ایرفویل مافوق بحرانی نوسانی (پیچ) در جریان تراکم پذیر با استفاده از سنسورهای فیلم داغ. مجله علمی پژوهشی مکانیک سازه‌ها و شاره‌ها 184-173 :(3)5.
[4] White FM (1993) Fluid mechanics. 3rd edn. McGraw-Hill, New York.
[5] Sakinda BC (1961) Bouundary layer behavior on continuous solid surface: II. Boundary layer behavior on continuous flat surface. AIChE J 7 (1): 221-225.
[6] Aydin O, Kaya A (2005) Laminar boundary layer flow over a horizontal permeable flat plate. Applied Mathematics and Computation A 161: 229-240.
[7] Steinrück H (2001) A review of the mixed convection boundary-layer flow over a horizontal cooled plate. GAMM Mitteilung Heft 2: 127-158.
[8] Kays WM, Crawford ME (1993) Convective heat and mass transfer. 3rd edn. McGraw-Hill, New York.
[9] ضیائی­راد م، کسایی­پور ع (1393) مطالعه عددی حل تشابهی جریان لایه مرزی جابجایی ترکیبی برای نانوسیال آب- مس از روی یک صفحه افقی. مجله علمی پژوهشی مهندسی مکانیک تربیت مدرس شاره‌ها 198-190 :(12)14.
[10] Khan WA, Culham R, Haq RU (2015) Heat transfer analysis of MHD water functionalized carbon nanotube flow over a static/moving wedge. J Nanomater 2015(112): 1-13.
[11] Rahman MM, Rosca AV, Pop I (2015) Boundary layer flow of a nanofluid past a permeable exponentially shrinking surface with convective boundary condition using Buongiorno’s model. Int J Numer Method H 25(2): 299-319.
[12] Hayat T, Muhammad T, Shehzad SA, Alsaedi A (2015) Similarity solution to three dimensional boundary layer flow of second grade nanofluid past a stretching surface with thermal radiation and heat source/sink. AIP Advances 5(1): 017107.
[13] Farooq U, Zhao YL, Hayat T, Alsaedi A, Liao SJ (2015)Application of the HAM-based Mathematica package BVPh 2.0 on MHD Falkner–Skan flow of nano-fluid. Comput Fluids 111: 69-75.
[14] Grosan T, Pop I (2011) Axisymmetric mixed convection boundary layer flow past a vertical cylinder in a nanofluid. Int J Heat Mass Tran 54(15): 3139-3145.
[15] Dinarvand S, Abbassi A, Hosseini R, Pop I (2015) Homotopy analysis method for mixed convective boundary layer flow of a nanofluid over a vertical circular cylinder. Therm Sci 19(2): 549-561.
[16] Maxwell JC (1873) A treatise on electricity and magnetism. Clarendon Press, Oxford.
[17] Choi US (1995) Enhancing thermal conductivity of fluids with nanoparticles. ASME FED 231: 99-103.
[18] Masuda H, Ebata A, Teramae K, Hishinuma N (1993) Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles. (Dispersion of Al2O3, SiO2, and TiO2 Ultra-fineParticles) Netsu Bussei 4: 227.
[19] Pak B, Cho YI  (1998) Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Transfer 11(2): 151-170.
[20] Ishak A,  Nazar R, Pop I (2010) MHD mixed convection boundary layer flow towards a stretching vertical surface with constant wall temperature. Int J Heat Mass Tran 53: 5330-5334.
[21] Ishak A,  Nazar R, Bachok N, Pop I (2010) MHD mixed convection flow adjacent to a vertical plate with prescribed surface temperature. Int J Heat Mass Tran 53: 4506-4510.
[22] Rana P, Bhargava R (2011) Numerical study of heat transfer enhancement in mixed convection flow along a vertical plate with heat source/sink utilizing nanofluids. Comm Nonlinear Sci Numer Simulat 16(11): 4318-4334.
[23] Rana P, Bhargava R (2012) Flow and heat transfer of a nanofluid over a nonlinearly stretching sheet: A numerical study. Comm Nonlinear Sci Numer Simulat 17: 212-226.
[24] Mahdy A (2012) Unssteady mixed convection boundary layer flow and heat transfer of nanofluids due to stretching sheet. Nucl Eng Des 249: 248-255.
[25] Brinkman HC, (1952) The viscosity of concentrated suspensions and solution, The Journal of Chemical Physics,  Vol. 20, No. 4, pp. 571-581.
[26] Maxwell JC (1873) A treatise on electricity and magnetism, , Oxford University Press, Cambridge, UK,  II: 54.
[27] Abu-Nada E, Masoud Z, Hijazi A (2008)  Natural convection heat transfer enhancement in horizontal concentric annuli using nanofluids. Int Commun Heat Mass 35(5): 657-665.
[28] Hoffmann KA, Chiang ST (2000) Computational fluid dynamics. Wichita.
[29] Jones DR (1973) Free convection from a semi-infinite plate inclined at a small angle. Quart. J Mech Appl Math 26: 77-98.