A New Adaptive Fuzzy Integral Sliding Mode Controller Design for Electrically Driven Nonholonomic Wheeled Mobile Robots

Authors

Abstract

In this paper, adaptive fuzzy integral sliding mode controller for controlling the position of the mobile robot on wheels in presence of motor’s dynamic, structural and un-structural uncertainties, existing in equations of mobile robot is designed. In the proposed controller, based on kinematic controlling of the back stepping method, the sliding surface dynamic controller the value of integral sliding mode controller is defined by a new method. Furthermore, to overcome undesired chattering phenomena in control input by using the fuzzy logic, a SISO fuzzy approximator is designed in a way to eliminate the chattering phenomena. Then to reduce the tracking error and to prevent, increasing of fuzzy system computational load, the adaptive fuzzy approximator will be presented, to approximate structural and un-structural uncertainties’ bound. Mathematical proof shows that the closed-loop system of kinematic control with adaptive fuzzy integral sliding mode control in the presence of all the uncertainties has global asymptotical stability. To show the performance of proposed controller, a case study of the wheel mobile robot in presence of DC servo motors is performed. Simulation’s results show the desired performance of the proposed controller.

Keywords

Main Subjects


[1] Jiang ZP, Nijmeijer H (1997) Tracking control of mobile robots: a case study in backstepping. Automatica 33(7): 1393–1399.
[2] Shojaei K, Mohammad-Shahri A, Tarakameh A (2011) Adaptive feedback linearizing control of nonholonomic wheeled mobile robots in presence of parametric and nonparametric uncertainties. Robot Cim-Int Manuf 27(1): 194–204.
[3] Fierro R, Lewis FL (1998) Control of a nonholonomic mobile robot using neural networks. IEEE Trans Neural Networks 9(4): 589–600.
[4] Wong CC, Wang HY, Li SA (2008) PSO-based motion fuzzy controller design for mobile robots. Int J Fuzzy Syst 10(1): 284-292.
[5] Su KH, Chen YY, Su SF (2010) Design of neural-fuzzy-based controller for two autonomously driven wheeled robot. Neurocomputing 73(13-15): 2478–2488.
[6] Fukao T, Nakagawa H, Adachi N  (2000) Adaptive tracking control of a nonholonomic mobile robot. IEEE Trans Neural Network 16(5): 609–615.
[7] Mohareri O, Dhaouadi R, Rad AB (2012) Indirect adaptive tracking control of a nonholonomic mobile robot via neural networks. Neurocomputing 88: 54–66.
[8] Sharma KD, Chatterjee A, Rakshit A (2012)          A PSO–Lyapunov hybrid stable adaptive fuzzy tracking control approach for vision-based robot navigation. IEEE T Instrum Meas 61(7): 1908–1914.
[9] Martıacute R, nezSoto O Castillo, Aguilar LT (2009) Optimization of interval type-2 fuzzy logic controllers for a perturbed autonomous wheeled mobile robot using genetic algorithms. J Int Sci 179(13): 2158–2174.
[10] Yang JM, Kim JH (1999) Sliding mode control for  trajectory tracking of nonholonomic wheeled mobile robots. IEEE Trans Robot 15(3): 578–587.
[11] Keighobadi J, Mohamadi Y (2011) Fuzzy sliding mode control of a non-holonomic wheeled mobile robot. International Multi Conference of Engineers and Computer Scientists Vol 2.
[12] Chen C, Li TS, Yeh Y, Chang CC (2009) Design and implementation of an adaptive sliding-mode dynamic controller for wheeled mobile robots. Mechatronics 19: 156–166.
[13] Chen N, Song F, li G, Sun X, Ai C (2013) An adaptive sliding mode backstepping control for mobile manipulator with nonholonomic constraints. Commun Nonlinear Sci Numer Simul 18(10): 2885-2899.
[14] Koubaa Y, Boukattaya M, Dammak T (2015) Adaptive sliding-mode dynamic control for path tracking of nonholonomic wheeled mobile robot. JASE 9(2): 119-131.
[15] Hsiao MY, Chen CY, Li THS (2008) Interval type-2 adaptive fuzzy sliding-mode dynamic control design for wheeled mobile robots. Int J Fuzzy Syst 10(4).
[16] Hou ZG, Zou AM, Cheng L, Tan M (2009) Adaptive control of an electrically driven nonholonomic mobile robot via backstepping and fuzzy approach, control systems technology. IEEE T Contr Syst T 17(4): 803-815.
[17] Sinaeefar Z , Farrokhi M (2012) Adaptive fuzzy model-based predictive control of nonholonomic wheeled mobile robots including actuator dynamics. IJSER 3(9):305-313.
[18] فاتح م م، عرب ع الف (1392) کنترل مد لغزشی تطبیقی ربات متحرک. مکانیک سازه ها و شاره ها، دوره 3، شماره 2، صفحه 11-12.
[19] Kanayama Y, Kimura Y, Miyazaki F, Noguchi T (1990) A stable tracking control method for an autonomous mobile robot. In Proc. IEEE Conf. Robotics and Automation 384–389, Cincinnati, OH.
[20] Veysi M, Soltanpour MR (2012) Eliminating chattering phenomenon in sliding mode control of robot manipulators in the joint space using fuzzy logic. J Solid Fluid Mech 2(3): 45-54.
[21] Wang LX (1997) A course in fuzzy systems and control. Prentice Hall, Englewood Cliffs, NJ.
[22]   Soltanpour MR, Otadolajam P,  Khooban MH (2014) A new and robust control strategy for electrically driven robot manipulators: adaptive fuzzy sliding mode. Iet Sci Meas Technol 9(3): 322-334.
[23] Khooban MH, Soltanpour MR (2013) Swarm optimization tuned fuzzy sliding mode control design for a class of nonlinear systems in presence of uncertainties. J Intell Fuzzy Syst 24(2): 383-394.
[24] Shafiei SE, Soltanpour  MR (2011) Neural network sliding-model-pid controller design for electrically driven robot manipulators. Int J Innov Comput I 5(12): 3949-3960.
[25] Soltanpour MR, Siahi M (2009) Robust control of robot manipulator in task space. Appl Comput Math-Bak 8(2): 227-238.