Design and fabrication of optimized gold micro-heater and comparison of its performance with platinum micro-heater

Authors

1 researcher

2 Assoc. Prof.

Abstract

With the development of microelectronics and micromachining technology, micro-heater has found plenty of applications in micro-sensor. Heating electrode material is one of the key factors which affect the power loss, response time and sensitivity of the micro-heater. In this paper, two micro-heaters with same geometry using two various metals have been design, fabricated and characterize on silicon substrate based on micro-electro-mechanical-systems (MEMS) fabrication process. In the first micro-heater, gold and in the second micro-heater, platinum are used as heating electrode, and the effect of heating electrode material on the performance of micro-heater is evaluated. Moreover, to improve micro-heaters efficiency, their design is investigated and the micro-heater with optimum design is chosen. The analytical results exhibit that gold micro-hater has lower response time and higher power loss than platinum micro-heater. The experimental results are in good agreement with the results obtained from the analytical analysis and show that fabricated micro-heaters with optimum design have high performance; as power consumption and response time are 36mW and 1.75ms respectively in gold micro-heater and 30mW and 2.1ms respectively in platinum micro-heater for the temperature variation from 30oC to 450oC. These results demonstrate that with fabrication of gold micro-heater response time improve 16.6% in comparison with platinum micro-heater.

Keywords

Main Subjects


[1] Courbat J, Canonica M, Teyssieux D, Briand D, Rooij ND (2010) Design and fabrication of micro-hotplates made on a polyimide foil: electrothermal simulation and characterization to achieve power consumption in the low mW range. J Micromech Microeng 21: 015014.
[2] Dai CL (2007) A capacitive humidity sensor integrated with micro heater and ring oscillator circuit fabricated by CMOS–MEMS technique. Sensor Actuat B-Chem 122: 375-380.
[3] Elmi I, Zampolli S, Cozzani E, Mancarella F, Cardinali G (2008) Development of ultra-low-power consumption MOX sensors with ppb-level VOC detection capabilities for emerging applications. Sensor Actuat B-Chem 135: 342-351.
[4] Hwang WJ, Shin KS, Roh JH, Lee DS, Choa SH (2011) Development of micro-heaters with optimized temperature compensation design for gas sensors. Sensors 11: 2580-2591.
[5] عبداللهی ح، سمائی­فر ف، حق نگهدار ا (1394) بررسی اثر به‌کارگیری SiO2/Al در بالا بردن حساسیت آشکارسازهای مادون‌قرمز بر پایه میکروکانتیلیور و مقایسه آن با Si3N4/Au. مجله علمی پژوهشی مکانیک سازه‌ها و شاره‌ها 5(3): 151-163.
[6] Courbat J, Briand D, Rooij NFD (2008) Reliability improvement of suspended platinum-based micro-heating elements. Sensor Actuat A-Phys 142: 284-291.
[7] Chung GS, Jeong JM (2010) Fabrication of micro heaters on polycrystalline 3C-SiC suspended membranes for gas sensors and their characteristics. Microelectron Eng 87: 2348-2352.
[8] Tao C, Yin C, He M, Tu S (2008) Thermal analysis and design of a micro-hotplate for Si-substrated micro-structural gas sensor. in Nano/Micro Engineered and Molecular Systems, 3rd IEEE International Conference on NEMS, 284-287.
[9] Laconte J, Flandre D, Raskin JP (2006) Micromachined thin-film sensors for SOI-CMOS co-integration. Springer,  Berlin.
[10] Fung SK, Tang Z, Chan PC, Sin JK, Cheung PW (1996) Thermal analysis and design of a micro-hotplate for integrated gas-sensor applications. Sensor Actuat A-Phys 54: 482-487.
[11] Lee J, Spadaccini CM, Mukerjee EV, King WP, (2008) Differential scanning calorimeter based on suspended membrane single crystal silicon microhotplate. J Microelectromech S 17: 1513-1525.
[12] Guo B, Bermak A, Chan PC, Yan GZ (2007) A monolithic integrated 4× 4 tin oxide gas sensor array with on-chip multiplexing and differential readout circuits. Solid State Electron 51: 69-76.
[13] Hotovy I, Rehacek V, Mika F, Lalinsky T, Hascik S, Vanko G (2008) Gallium arsenide suspended microheater for MEMS sensor arrays. Microsyst Technol 14: 629-635.
[14] Zhang F, Tang ZA, Yu J, Jin R (2006) A micro-Pirani vacuum gauge based on micro-hotplate technology. Sensor Actuat A-Phys 126: 300-305.
[15] Ehmann M, Ruther P, Arx M, Paul O (2001) Operation and short-term drift of polysilicon-heated CMOS microstructures at temperatures up to 1200 K. J Micromech Microeng 11: 397.
[16] Afridi M, Suehle J, Zaghloul M, Berning D, Hefner A, Cavicchi R, Seman-cik S, Montgomery C, Taylor C (2002) A monolithic CMOS microhotplate-based gas sensor system. IEEE Sens J 2: 644-655.
[17] Yi X, Lai J, Liang H, Zhai X (2011) Fabrication of a MEMS micro-hotplate. in Journal of Physics: Conference Series 012098.
[18] Kunt TA, McAvoy TJ, Cavicchi RE, Semancik S (1998) Optimization of temperature programmed sensing for gas identification using micro-hotplate sensors. Sensor Actuat B-Chem 53: 24-43.
[19] Phatthanakun R, Deekla P, Pummara W, Sriphung C, Pantong C, Chomnawang N (2011) Fabrication and control of thin-film aluminum microheater and nickel temperature sensor. in 8th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), 14-17.
[20] Bauer D, Heeger M, Gebhard M, Benecke W (1996) Design and fabrication of a thermal infrared emitter. Sensor Actuat A-Phys 55: 57-63.
[21] Kishi N, Hara H (2007) Lifetime evaluation of self-modulated MEMS infrared light source made of single crystalline silicon. in SICE, Annual Conference, 2451-2454.
[22] Harris J (1976) Autoignition temperatures of military high explosives by differential thermal-analysis. Thermochim ACTA 14: 183-199. 
[23] سمائی­فر ف، حاج قاسم ح، محتشمی فر م، علی ­احمدی م (1391) طراحی و شبیه­سازی میکروهیتر ساخته شده با تکنولوژی MEMS. مجله صنایع الکترونیک 3(4):95-111.
[24] سمائی­فر ف، حاج قاسم ح، عبداللهی ح، محتشمی­فر م، علی ­احمدی م (1392) طراحی و ساخت میکروهیتر پلاتینی کم­مصرف با عملکرد بالا مبتنی بر ساختار غشای معلق. مجله صنایع الکترونیک 4(1): 25-32.
[25] Dennis JO, Ahmed AY, Mohamad NM (2010) Design, simulation and modeling of a micromachined high temperature microhotplate for application in trace gas detection. Int J Eng Technol 10: 89-96.
[26] Yi D, Greve A, Hales JH, Senesac LR, Davis ZJ, Nicholson DM, Boisen A, Thundat T (2008) Detection of adsorbed explosive molecules using thermal response of suspended microfabricated bridges. Appl Phys Lett 93: 154102.
[27] Mayadas AF, Shatzkes M (1970) Electrical-resisitivity model for poly-crystalline films: the case of arbitrary reflection at external surfaces. Phys Rev B 1 4: 1382.
[28] Walker P, Tarn W (1991) Handbook of Metal etchants. CRC pres. USA.