A Numerical Study of Emulsification Process in Microfluidic Flow-Focusing Devices

Authors

Research Deputy

Abstract

An emulsion is a mixture of two immiscible liquids in which one liquid is dispersed in the form of small drops in the other liquid. The liquid in the form of droplets is called discrete phase whereas the other liquid is termed as a continuous phase. One of the common methods for emulsification is based on using microfluidic devices. Currently, the study of flow in microfluidic devices is highly regarded due to having many applications in various fields including droplet generation in relation with the standard and quality of human life. In this study, the process of droplet generation in microfluidic flow-focusing devices with orthogonal and intersecting flows has been simulated. The effects of viscosity and flow rate of discreted and continuous phases on droplet generation process have been investigated. According to simulation results, with increasing the flow rate of discreted phase (Qd) at a fixed continuous phase leads to the increment of droplet size whereas an increas in the flow rate of continuous phase (Qc) at a fixed discreted phase results in smaller droplet size. Moreover, for a constant Qc/Qd ratio, regardless of whether discrete or continuous phase flow rate is fixed, the equal droplet size is achieved. The higher viscosity of the discrete phase provides a larger droplet size whereas an increase in the viscosity of continuous phase leads to a smaller droplet size. The simulation results in comparison with experimental results show a good agreement confirming the accuracy of the method.

Keywords

Main Subjects


[1] Nguyen NT, Wereley ST (2002) Fundamentals and applications of microfluidics. Artech House.
[2] Hung LH, Lee AP (2007) Microfluidic devices for the synthesis of nanoparticles and biomaterials. J Med Biol Eng 27(1): 1-6.
[3] Capretto L, Cheng W, Hill M, Zhang X (2011)  Micromixing within microfluidic devices. Microfluidics Springer, Berlin Heidelberg, 27-68.
[4] Lee CY, Chang CL, Wang YN, Fu LM (2011)  Microfluidic mixing: a review. INT J MOL Sci 12(5): 3263-3287.
[5] Suh YK, Kang S (2010) A review on mixing in microfluidics. Micromachines 1(3): 82-111.
[6] Lewis PC, Graham RR, Nie ZH, Xu SQ, Seo M, Kumacheva E (2005) Continuous synthesis of copolymer particles in microfluidic reactors. Macromolecules 38(10): 4536-4538.
[7] Nie ZH, Xu SQ, Seo M, Lewis PC, Kumacheva E (2005) Polymer particles with various shapes and morphologies produced in continuous microfluidic reactors. J Am Chem Soc 127(22): 8058-8063.
[8] Nisisako T, Torii T, Higuchi T (2004) Novel microreactors for functional polymer beads. Chem Eng J 101(1): 23-29.
[9] Seo M, Nie ZH, Xu SQ, Mok M, Lewis PC (2005) Continuous microfluidic reactors for polymer particles. Langmuir 21(25): 11614-11622.
[10] Jensen K, Lee A (2004) The science and applications of droplets in microfluidic devices—Foreword. Lab Chip 4(1): 31-32.
[11] Jeong WJ, Kim JY, Choo J, Lee EK (2005) Continuous fabrication of biocatalyst immobilized microparticles using photopolymerization and immiscible liquids in microfluidic systems. Langmuir 21(9): 3738-3741.
[12] Li W, Nie ZH, Zhang H, Paquet C, Seo M, Garstecki P, Kumacheva E (2007) Screening of the effect of surface energy of microchan- nels on microfluidic emulsification. Langmuir 23(15): 8010-8014.
[13] Sugiura S, Nakajima M, Itou H, Seki M (2001) Synthesis of polymeric microspheres with narrow size distributions employing microchan- nel emulsification. Macromol Rapid Comm 22(10): 773-778.
[14] Sugiura S, Nakajima M, Seki M (2002) Effect of channel structure on microchannel emulsification. Langmuir 18(15): 5708-5712.
[15] Sugiura S, Nakajima M, Seki M (2002) Prediction of droplet diameter for microchannel emulsification. Langmuir 18(10): 3854-3859.
[16] Tan YC, Cristini V, Lee AP (2006) Monodispersed microfluidic droplet generation by shear focusing microfluidic device. Sens Actuators B 114(1): 350-356.
[17] Ward T, Faivre M, Abkarian M, Stone HA (2005) Microfluidic flow focusing: Drop size and scaling in pressure versus flow-rate driven pumping. Electrophoresis 26(19): 3716-3724.
[18] Nakano M (2000) Places of emulsions in drug delivery. Adv Drug Deliver Rev 45(1): 1-4.
[19] Kang L, Chung BG, Langer R, Khademhosseini A (2008) Microfluidics for drug discovery and development: From target selection to product lifecycle management. Drug Discov Today 13(1): 1-13.
[20] Li XJ, Zhou Y (2013) Microfluidic devices for biomedical applications. Elsevier.
[21] Atencia J, Beebe DJ (2005) Controlled  microfluidic  interfaces. Nature 437(7050): 648-655.
[22] Becher P (1965) Emulsions: Theory and Practice. Reinhold. New York.
[23] Sebba F (1987) Foams and Biliquid Foams-Aphrons. John Wiley & Sons, Chichester.
[24] Leal-Calderon F (2007) Emulsion Science: Basic Principles. Springer Verlag, New York.
[25] Schramm LL (2005) Emulsions, Foams and Suspensions: Fundamentals and Applications. Wiley-VCH, Weinheim.
[26] Tuncer Degim I,  Çelebi N (2007) Controlled delivery of peptides and proteins. Curr Pharm Design 13(1): 99-117.
[27] Davis SS, Walker IM (1987) Multiple emulsions as targetable delivery systems. Method Enzymol 149(1): 51-64.
[28] Vasiljevic D, Parojcic J, Primorac M, Vuleta G (2006) An investigation into the characteristics and drug release properties of multiple W/O/W emulsion systems containing low concentration of lipophilic polymeric emulsifier. International journal of pharmaceutics 309(1): 171-177.
[29] Huang JS, Varadaraj R (1996) "Colloid and interface science in the oil industry. Curr Opin Colloid In 1(4): 535-539.
[30] Muschiolik G (2007) Multiple emulsions for food use. Current Opinion in Colloid & Interface Science 12(4):  213-220.
[31] Leal-Calderon F, Thivilliers F, Schmitt V (2007) Structured emulsions. . Curr Opin Colloid In 12(4): 206-212.
[32] Ouyang Y, Mansell RS & Rhue RD (1995) Emulsion mediated transport of nonaqueous phase liquid in porous media: A review. Crit Rev Env Sci Tec 25(3): 269-290.
[33] De Menech M, Garstecki P, Jousse F, Stone HA (2007) Transition from squeezing to dripping in a microfluidic T-shaped junction. Fluid Mech 595(1): 141-162.
[34] Garstecki P, Fuerstman MJ, Stone HA, Whitesides GM (2006) Formation of droplets and bubbles in a microfluidic T-junction scaling and mechanism of break up. Lab an a Chip 6(3): 437-446.
[35] Utada AS, Chu LY, Fernandez-Nieves A, Link DR, Holtze C, Weitz DA (2007) Dripping, jetting, drops, and wetting: the magic of microfluidics. Mrs Bulletin 32(9): 702-708
[36] Shah RK, Shum HC, Rowat AC, Lee D, Agresti JJ, Utada AS (2008) Designer emulsions using microfluidics. Materials Today 11(4): 18-27.
[37] Vladisavljević GT, Henry JV, Duncanson WJ, Shum HC, Weitz DA (2012) Fabrication of biodegradable poly (lactic acid) particles in flow-focusing glass capillary devices. UK Colloids 139(1): 111-114.
[38] Anna SL, Bontoux N, Stone HA (2003) Formation of dispersions using flow focusing in microchannels. Appl Phys Lett 82(3): 364-366.
[39] Link DR, Anna SL, Weitz DA, Stone HA (2004) Geometrically mediated breakup of drops in microfluidic devices. Phys Rev Lett 92(5): 054503_1-4.
[40] Gu H, Duits MH, Mugele F (2011) Droplets formation and merging in two-phase flow microfluidics. INT J MOL Sci 12(4): 2572-2597.
[41] Li Z, Leshansky AM, Pismen LM, Tabeling P (2015) Step-emulsification in a microfluidic device. Lab on a Chip 15(4): 1023-1031.
[42] Nunes JK, Tsai SSH, Wan J, Stone HA (2013) Dripping and jetting in microfluidic multiphase flows applied to particle and fibre synthesis. J Phys D Appl Phys 46(11): 1-20.
[43] EunáKim Y, SunáLee K, HyunáLee S, WookáOh K, YoonáKang J (2011) Generation of core-shell microcapsules with three-dimensional focusing device for efficient formation of cell spheroid. Lab on a Chip 11(2): 246-252.
[44] Chandorkar A, Palit S (2009) Simulation of droplet dynamics and mixing in microfluidic devices using a VOF-based method. Sens Transducers J 7(1): 136-149.
[45] Conchouso D, Al Rawashdeh E, Castro D, Arevalo A, Foulds IG (2013) Optimized Channel Geometry of a Flow-Focusing Droplet Generator for Parallelization. In COMSOL Conference Proceeding.
[46] Hashim U, Diyana PNA, Adam T (2012) Numerical simulation of microfluidic devices. J Appl Sci Research 8(4): 26-29.
[47] Afkhami S, Leshansky AM, Renardy Y (2011) Numerical investigation of elongated drops in a microfluidic T-junction. Phys Fluids 23(2): 022002_1-14.
[48] جمشیداصلی د، عباسی ع (1392) شبیه‌سازی عددی دوفازی جریان و انتقال حرارت نانوسیال‌ها در میکروچاه حرارتی با استفاده از مدل مخلوط همگن. مجله مکانیک سازه‌ها و شاره‌ها 3(2): 51-63.
[49] تقی‌پور ع، کریمی‌پور آ (1394) شبیه‌سازی انتقال حرارت جابجایی نانوسیال متشکله از آب و نانو لوله کربنی در ریزکانال تحت میدان مغناطیسی در رژیم جریان لغزشی. مجله مکانیک سازه‌ها و شاره‌ها 5(3): 209-222.
[50] Lee J, Lee W, Son G (2013) Numerical study of droplet breakup and merging in a microfluidic channel. Journal of Mechanical Science and Technology 27(6):  1693-1699.
[51] ادیبی پ، انصاری م‌ر (1394 هـ. ش.) شبیه‌سازی عددی جریان دوفازی گاز-مایع در کانال افقی طویل و تعیین فرکانس اسلاگ با استفاده از مدل دوسیالی. مجله مهندسی مکانیک شریف، 3(2): 67-77.
[52] Abrishamkar A, Rane AS, Elvira KS, Wootton RCR, Sainio TA (2013) COMSOL Multiphysics Model of Droplet Formation at a Flow Focusing Device. In COMSOL Conference Proceeding.
[53] Multiphysics COMSOL manual, (1998-2013)  "Introduction to the CFD Module User’s Guide" COPYRIGHT COMSOL AB, Version COMSOL 4.3b.
[54] Olsson E,  Kreiss G (2005) A conservative level set method for two phase flow I. J Comput Phys 210(1): 225-246.
[55] Olsson E, Kreiss G, Zahedi S (2007) A conservative level set method for two phase flow II. J Comput Phys 225(1): 785-807.
[56] Nie Z, Seo M, Xu S, Lewis PC, Mok M, Kumacheva E, George M. Whitesides GM, Garstecki P, Stone HA (2008) Emulsification in a microfluidic flow-focusing device: effect of the viscosities of the liquids. Microfluid Nanofluid 5(5): 585-594.