Simulation of Anodic Dissolution in Electrochemical Machining and Tool Design using the Sensitivity Method

Authors

Abstract

Electrochemical machining process (ECM) is one of non-traditional machining processes used in various industries due to certain advantages of this process. This machining process is based on the anodic dissolution so having no contact between work piece and tool leads to less tool wear and eliminating cutting forces that are some of the most important benefits of electrochemical machining. There is not still an acceptable method to predict the workpiece shape for a specific tool and also desired tool for a given cavity because of the complexity of this process while using conventional trial and error method to extract the shape of the workpiece and the tool is time consuming and costly. Simulation of Electrochemical machining process is a useful method to overcome this problem and let us to design and predict noted parameters while reducing costs and improving time are achievable. In this paper anodic dissolution in each time step has been simulated using finite element method to simulated electrochemical machining process. Then, using results of the simulated model and the sensitivity algorithm extraction of improved tool shape and desired workpiece are possible. The results demonstrate the ability of the new method proposed in this paper for simulation of electrochemical machining process and design tool.

Keywords

Main Subjects


[1]  Davydov AD, Volgin VM, Lyubimov VV (2004) Electrochemical machining of metals: fundamentals of electrochemical shaping. Russ J Electrochem 40(12): 1230-1265.
[2]  Rajurkar KP, Sundaram MM, Malshe AP (2013) Review of electrochemical and electrodischarge machining. Procedia CIRP: 613-26.
[3]  Pa PS, Hocheng H (2013) Electrochemical machining. In: Adv Analysis of Nontraditional Machining (107-257). Springer, New York.
[4]  H El-Hofy HAG (2013) Fundamentals of machining processes: conventional and nonconventional processes. CRC press.
[5] Klocke F, Zeis M, Klink A (2012, April) Technological and economical capabilities of manufacturing titanium-and nickel-based alloys via Electrochemical Machining (ECM). In Key Eng Mat 504: 1237-1242.
[6]  Klocke F, Zeis M, Klink A, Veselovac D (2012) Technological and economical comparison of roughing strategies via milling, EDM and ECM for titanium-and nickel-based blisks. Procedia CIRP 2: 98-101.
[7]  Tipton H (1964) in: Proceedings of the Fifth Machine Tool Design Conference. 2nd edn. Oxford: Pergamon Press.
[8]  Tipton H (1971) Calculation of tool shape for ECM in fundament of Electrochemical Machining. In Electrochemical Society Softbound Symposium Series, Princeton, Edited by Cl Faust.
[9] Chandrupatla TR, Belegundu AD (2002) Introduction to finite elements in engineering. 3rd edn. Prentice Hall.
[10] مروج س م، میرزایی ا، شیروانی ح (1385) شبیه­سازی ماشینکاری الکتروشیمیایی (ECM). چهاردهمین کنفرانس سالانه مهندسی مکانیک، دانشگاه صنعتی اصفهان، اصفهان.
[11] قبادی م، فدایی تهرانی ع (1389) کاربرد روش المان محدود در طراحی ابزار ماشینکاری الکتروشیمیایی مغناطیسی. هجدهمین کنفرانس سالانه مهندسی مکانیک، دانشکده مهندسی مکانیک دانشگاه شریف، تهران.
[12] MPurcar M, Bortels L, Van den Bossche B, Deconinck J (2004) 3D electrochemical machining computer simulations. J Mat Proc Tech 149(1): 472-478.
[13] Kozak J, Rajurkar KP, Ross RF (1991) Computer simulation of pulse electrochemical machining (PECM). J Mat Proc Tech 28(1): 149-157.
[14] Lu J, Riedl G, Kiniger B, Werner EA (2014) Three-dimensional tool design for steady-state electrochemical machining by continuous adjoint-based shape optimization. Chem Eng Sci 106: 198-210.
[15] Barak-Shinar D, Rosenfeld M, Abboud S (2004) Numerical simulations of mass-transfer processes in 3D model of electrochemical sensor. J Electrochem Soc 151(12): H261-H266.
[16] Mcgeough JA (1974) principles of electrochemical machining. Wiley & Sons, New York.
[17] Bhattacharyya S, Ghosh A, Mallik AK (1997) Cathode shape prediction in electrochemical machining using a simulated cut-and-try procedure. J Mat Proc Tech 66(1): 146-152.
[18] Chang CS, Hourng L W (2001) Two-dimensional two-phase numerical model for tool design in electrochemical machining. J app electrochem 31(2): 145-154.
[19] Laporte E, Le Tallec P (2012) Numerical methods in sensitivity analysis and shape optimization. Springer Science & Business Media.