Smart Fault Diagnosis of Rotating Machine Using Fuzzy Systems and Analysis the Effect of Different Membership Functions

Authors

Abstract

In this paper, automatic fault diagnosis of rotating machines using vibrating data measured from different point of machines and an smart fuzzy knowledge-based systems is discussed. To this end, a new vibrations’ identification chart, recently published, is used. This vibrations' identification chart contained frequency characteristics and phase angle and is represented for some usual defects such as unbalancy, misalignment, bent shaft and mechanical looseness. Designed fuzzy knowledge-based system has a very simple structure. It do not need any complicated training such as those are used for neural network training. To evaluate the performance of the designed fuzzy system in actual application, it is used for fault diagnosis of some rotating machines in Isfahan Steel Company such as Fans. The effect of different membership functions such as non-linear Gaussian, bell-shaped, sigmoid, s-shape and z-shape function for inputs and outputs of fuzzy rules database is investigated and.the results are compared with the results of some neural networks-based fault diagnosis systems. Results show the designed smart fuzzy system has acceptable performance in detecting fault.

Keywords


[1] ضیایی‌راد س, نوریان س (1381) کاربرد ارتعاشات در پایش وضعیت و عیب‌یابی ماشین‌آلات دوار  موسسه علمی دانش پژوهان برین, اصفهان.
[2] ستوده م, جورابیان م (1391) مانیتورینگ و عیب‌یابی ماشین‌های دوار بر اساس طیف توان بوسیله منطق فازی. پانزدهمین کنفرانس دانشجویی مهندسی برق کاشان، ایران: 1-6.
[3] Huang YP, Wang SF (1997) The identification of fuzzy grey prediction system by genetic algorithms. Int J Syst Sci 28(1): 15-24.
[4] Wang WJ, McFadden PD (1996) Application of wavelets to gearbox vibration signals for fault detection. J Sound Vibration 192(5): 927-939.
[5] Mechefske CK (1998) Objective machinery fault diagnosis using fuzzy logic. Mech Syst Signal Pr 12(6): 855-862.
[6] Yang M, Shen Q (2008) Fuzzy diagnosis of turbomachines. Int J Know-Based Intell Eng Syst 12(2): 137-146.
[7] Paily B, Kumaravel S, Basu M, Conlon M (2015) Fault analysis of VSC HVDC systems using fuzzy logic. Proc. IEEE International Conference on Signal Processing, Informatics, Communication and Energy Systems (SPICES). India: 1-5.
[8] Sulaiman NA, Othman MF, Abdullah H (2015) Fuzzy Logic Control and Fault Detection in Centralized Chilled Water System. Proc. IEEE Symposium Series on Computational Intelligence. South Africa: 8-13.
[9] Wang T, Zhang G, Zhao J, He Z, Wang J, Perez-Jimenez MJ (2015) Fault Diagnosis of Electric Power Systems Based on Fuzzy Reasoning Spiking Neural P Systems.  30(3): 1182-1194.
[10] اسماعیلی م (1393) ارایه چارت جدید تعیین هویت ارتعاشات برای ماشین آلات دوار. تز کارشناسی ارشد  دانشکده فنی و مهندسی، گروه مهندسی مکانیک, دانشگاه شهرکرد.
[11] معصومی غ, صالحی ع, میمندپور ب (1388) کاربرد منطق فازی در فرآیندهای تصمیم‌گیری واحد پایش وضعیت و تعمیرات دستگاه‌ها. چهارمین کنفرانس تخصصی پایش وضعیت و عیب یابی ماشین آلات. ایران، تهران: 894-902.
[12] کیا م (1389) Matlab منطق فازی در کیان رایانه سبز، تهران.