Fuzzy sliding mode control of Lorenz chaotic system using improved model reference approach

Author

Abstract

In this paper, by combining the merits of model reference adaptive control, sliding mode and fuzzy control a novel control approach is proposed to address the stabilization and tracking problem of Lorenz chaotic system without chattering phenomenon in the face of structure and unstructured uncertainties. In this control scheme an adaptive fuzzy system is used to estimation unknown function. As a result, there is no need to calculate the bound of unknown function and chattering phenomenon is attenuated. One of the advantages of proposed method is that the behavior of close loop system is similar to proposed model reference in the presence of uncertainties and disturbances. As a result, the shortcoming of adaptive control in the presence of unmodeled dynamics and external disturbances is compensated. Another advantage of proposed approach is that chaotic systems have unpredictable behavior and extreme sensitivity to initial conditions. The stability analysis is verified and the effectiveness of the proposed method is compared with backstepping method through simulation. Numerical simulations illustrate that proposed control approach is superior to backstepping method already published in literatures in overcoming uncertainties.

Keywords

Main Subjects


[1] فاتح م م، عابدین زاده شهری م (1394) کنترل فازی تطبیقی بازوی رباتیک سیار. مکانیک سازه‌ها و شاره‌ها 5  17-27.
[2] فاتح م م، کیقبادی ج (1394) کنترل فازی تطبیقی ربات تک چرخ الکتریکی. مکانیک سازه‌ها و شاره‌ها 561-75.
[3] Chen G (1999) Controlling chaos and bifurcations in engineering systems. CRC press.
[4] Kocamaz UE, Uyaroğlu Y, Kizmaz, H (2014) Control of Rabinovich chaotic system using sliding mode control. Int J Adapt Control 28: 1413-1421.
[5] Ott E, Grebogi C, Yorke JA (1990) Controlling chaos. Phys Rev Lett 64: 1196-1199.
[6] Shinbrot T, Ott E, Grebogi C, Yorke JA (1990) Using chaos to direct trajectories to targets. Phys Rev Lett 65: 3215.
[7] Fang JQ, Hong Y, Qin H, Chen G (2000) Nonlinear control of chaotic systems: A switching manifold approach. Discrete Dyn Nat Soc 4: 257-267.
[8] Ramesh M, Narayanan S (2001) Chaos control of Bonhoeffer–van der Pol oscillator using neural networks. Chaos Soliton Fract 12: 2395-2405.
[9] Chen CW (2014) Applications of neural-network-based fuzzy logic control to a nonlinear time-delay chaotic system. J Vib Control 20: 589-605.
[10] Udawatta L, Watanabe K, Kiguchi K, Izumi K (2002) Fuzzy-chaos hybrid controller for controlling of nonlinear systems. IEEE T Fuzzy Syst 10(3): 401-411.
[11] Hu C, Jiang H (2014) Time-delayed impulsive control of chaotic system based on TS fuzzy model. Math Probl Eng.
[12] Fuh CC, Tung PC (1995) Controlling chaos using differential geometric method. Phys Rev Lett 75: 2952.
[13] Li J, Li W, Li Q (2012) Sliding mode control for uncertain chaotic systems with input nonlinearity. Commun Nonlinear Sci Numer Simul 17(1): 341-348.
[14] Nazzal JM, Natsheh AN (2007) Chaos control using sliding-mode theory. Chaos Soliton Fract 33: 695-70.
[15] Dadras S, Momeni HR, Majd VJ (2009) Sliding mode control for uncertain new chaotic dynamical system. Chaos Soliton Fract 41: 1857-1862.
[16] Guo H, Lin S, Liu J (2006) A radial basis function sliding mode controller for chaotic Lorenz system.  Phys Rev Lett 351: 257-261.
[17] Fateh MM, Alfi A, Moradi M, Modarres H (2009) Sliding mode control of lorenz chaotic system on a moving fuzzy surface. EUROCON, IEEE 964-970.
[18] Wang LX (1999) A course in fuzzy systems. Prentice-Hall press, USA.
[19] Chena SW, Yangb YS, Zhang-Jian PZ, Liaob TL, Yan JJ (2013) Synchronization control of uncertain generalized lorenz chaotic system: chattering-free sliding   model   control.  in:  Proceedings   of    the International MultiConference of Engineers and Computer Scientists.
[20] Ha QP, Rye DC, Durrant-Whyte HF (1999) Fuzzy moving sliding mode control with application to robotic manipulators. Automatica 35: 607-616.
[21] Li THS, Huang YC (2010) MIMO adaptive fuzzy terminal sliding-mode controller for robotic manipulators. Inform Sciences 180:4641-4660.
[22] Guo Y, Woo PY (2003) An adaptive fuzzy sliding mode controller for robotic manipulators. IEEE T Syst Man Cy A 33: 149-159.
[23] Mascolo S (1997) Backstepping design for controlling Lorenz chaos, in:  IEEE Conference On Decision And Control, Citeseer, 1500-1501.
[24] Al-sawalha MM, Noorani M, Al-Dlalah M (2010) Adaptive anti-synchronization of chaotic systems with fully unknown parameters. Comput Math Appl 59: 3234-3244.