Finite element modeling of debonding behavior of the adhesively bonded joints between sandwich panel and pultruded profile in flexural loading

Authors

Abstract

The strength of adhesively bonded joint plays very important role on the behavior of loaded composite structures. In the present paper debonding behavior of the adhesive joint between sandwich panel and pultruded profile is investigated by the finite element method. Cohesive zone model and contact elements are used in order to simulate the adhesive joint between stiffener and the panel. Representing the adhesive material, an embedded layer is modeled between the sandwich panel and profile. The effects of geometrical parameters including the thickness of the adhesive layer and profile on the behavior of joint are investigated. Moreover, the effect of initial defect in the adhesive joint on the debonding results is studied. The results present that in the prefect bonding, increasing in the thicknesses of the profile and adhesive layer improves the joint behavior against debonding. However in defected joint, increasing the profile thickness decreases the debonding load and presence of initial defect decreases the debonding load by 51%. The results also show that presence of embedded adhesive layer has positive effect on the debonding behavior of the joint. Initial debonding load without adhesive layer decreases by 40% in comparison with the joint containing 10 mm adhesive layer.

Keywords

Main Subjects


[1] Davies GAO, Hitchings D, Ankersen J (2006) Predicting delamination and debonding in modern aerospace composite structures. Compos Sci Technol 66(6): 846-854.
[2] مرتضی باقری، علی اصغر جعفری، مرتضی صادقی فر (1393) تبهینه‌سازی وزنی و کمانشی پوسته‌های تقویت‌شده کامپوزیتی لایه‌ای. مجله علمی پژوهشی مکانیک سازه‌ها و شاره‌ها، دوره 4، شماره 1، بهار، صفحه 37-49.‎
[3] امین نارکی، پویان قابضی (1392) تحلیل مخازن جدار ضخیم کامپوزیتی تحت اثر فشار و دمای سیکلی داخلی.‎ مجله علمی پژوهشی مکانیک سازه‌ها و شاره‌ها، دوره 3، شماره 1، صفحه 15-32.
[4] Yap JW, Scott ML, Thomson RS, Hachenberg D (2002) The analysis of skin-to-stiffener debonding in composite aerospace structures. Compos Struct 57(1): 425-435.
[5] Mikulik Z, Kelly DW, Prusty BG, Thomson RS (2008) Prediction of flange debonding in composite stiffened panels using an analytical crack tip element-based methodology. Compos Struct 85(3): 233-244.
[6] Camanho PP, Davila CG, De Moura MF (2003) Numerical simulation of mixed-mode progressive delamination in composite materials. J Compos Mater 37(16): 1415-1438.
[7] Minguet PJ, O'Brien TK (1996) Analysis of test methods for characterizing skin/stringer debonding failures in reinforced composite panels. ASTM STP 1274: 105-124.
[8] Wagner W, Balzani C (2008) Simulation of delamination in stringer stiffened fiber-reinforced composite shells. Comput Struct 86(9): 930-939.
[9] Bertolini J, Castanié B, Barrau JJ, Navarro, JP (2009) Multi-level experimental and numerical analysis of composite stiffener debonding. Part 1: Non-specific specimen level. Compos Struct 90(4): 381-391.
[10] Bertolini J, Castanié B, Barrau JJ, Navarro JP, Petiot C (2009) Multi-level experimental and numerical analysis of composite stiffener debonding. Part 2: Element and panel level. Compos Struct 90(4): 392-403.
[11] Khalili SMR, Ghaznavi A, Ghaznavi A (2013) Effect of Joint Geometry on the Behavior and Failure Modes of Sandwich T-Joints Under Transverse Static and Dynamic Loads. J Adhesion (just-accepted).
[12] آیدین غزنوی اسگویی, محمد رضا خلیلی، امین غزنوی اسگویی (2014) تاثیر هندسه بر رفتار و مدهای شکست اتصال Tشکل پانل‌های ساندویچی تحت بارگذاری عرضی. مجله مدل سازی در مهندسی 12(36): 85-101.‎
 [13] Gulasik H, Coker D (2014) Delamination-Debond Behaviour of Composite T-Joints in Wind Turbine Blades. In Journal of Physics: Conference Series (524(1): 012043). IOP Publishing.
[14] Zhou DW, Louca LA, Saunders M, (2008). Numerical simulation of sandwich T-joints under dynamic loading. Compos Part B-Eng (39): 973–9