[1] Larminie J, Dicks A (2004) Fuel Cell Systems Explained. Wiley, New York.
[2] Massardo AF, McDonald CF, Korakianitis T, Microturbine/Fuel–Cell Coupling For High-Efficiency Electrical Power Generation. ASME 00–GT–175.
[3] Massardo AF, Lubelli F Internal Reforming Solid Oxide Fuel Cell-Gas Turbine Combined Cycles (IRSOFC-GT): Part A–Cell Model and Cycle Thermodynamic Analysis. ASME 98–GT–577.
[4] Campanari S, Full Load and Part–Load Performance Prediction for Integrated SOFC and Microturbine Systems. ASME 99–GT–65.
[5] Costamagna P, Magistri L, Massardo AF (2001) Design and Part–Load performance of a hybrid system based on a solid oxide fuel cell reactor and a micro gas turbine. J Power Sources. 96: 352–368.
[6] Chan SH, Khor KA, Xia ZT (2001) A complete polarization model if a solid oxide fuel cell and it’s sensitivity to the change of cell component thickness.J Power Sources. 93:130–140.
[7] Chan SH, Ho HK, Tian Y (2002) Modelling of simple hybrid solid oxide fuel cell and gas turbine power plant.J Power Sources. 109: 111–120.
[8] Chan SH, Low CF, Ding OL (2002) Energy and exergy analysis of simple solid-oxide fuel–cell power systems.J Power Sources. 103: 188–200.
[9] Chan SH, Ho HK, Tian Y (2003) Multi–level modeling of SOFC–gas turbine hybrid system. Int J Hydrogen Energ. 28: 889–900.
[10] Chan S.H, Ho H.K, Tian Y (2003) Modeling for part-load operation of solid oxide fuel cell-gas turbine hybrid power plant.J Power Sources. 114: 213–227.
[11]Massardo A.F, Magistri L, Internal Reforming Solid Oxide Fuel Cell-Gas Turbine Combined Cycles (IRSOFC–GT): Part II–Exergy and Thermoeconomic Analysis. ASME 2001–GT–380.
[12] Bavarsad PG (2007) Energy and exergy analysis of internal reforming solid oxide fuel cell–gas turbine hybrid system.Int J Hydrogen Energ. 32: 4591–4599.
[13] Calise F, Dentice d’Accadia M, Palombo A, Vanoli L (2006) Simulation and exergy analysis of a hybrid Solid Oxide Fuel Cell (SOFC)–Gas Turbine System. Energy, 31: 3278–3299.
[14] Calise F, Palombo A, Vanoli L (2006) Design and partial load exergy analysis of hybrid SOFC–GT power plant. J Power Sources, 156: 225–244.
[15] Calise F, Dentice d’Accadia M, Palombo A, Vanoli L, von Spakovsky MR (2006) Single-level optimization of a hybrid SOFC–GT power plant. J of Power Sources. 159: 1169–1185.
[16] Calise F, Dentice d’Accadia M, Palombo A, Vanoli L, von Spakovsky MR (2007) Full load synthesis/design optimization of a hybrid SOFC–GT power plant. Energy, 32: 446–458.
[17] Autissier N, Palazzi F, Marechal F, Van Herle J, Favrat D (2007) Thermo–Economic Optimization of a Solid Oxide Fuel Cell. Gas Turbine Hybrid System, ASME J. of Fuel cell science and technology. 4: 123–129.
[18] Duan L, He B, Yang Y (2011) Parameter optimization study on SOFC–MGT hybrid power system. Int J Energ Res, Volume 35, Issue 8: 721–732.
[19] Holman J.P (2001) Heat Transfe.9thed, McGraw-Hill, New York.
[20] Sanaye S, Hajabdollahi H (2010) Thermal-economic multi-objective optimization of plate fin heat exchanger using genetic algorithm. Applied Energy.87:1893–1902.
[21] Sanaye S, Ghazinejad M (2007) Thermoeconomic Optimization of Gas Turbine Combined Heat and Power System In a Paper Mill. ASME GT–2007–27206.
[22] Siemens-Westinghouse Power Corporation(2000) Pressurized Solid Oxide Fuel Cell/Gas Turbine Power System, Final Report, for US department of energy,February.
[23] Sanaye S, Dehghandokht M (2010) Modeling and multi-objective optimization of parallel flow condenser using evolutionary algorithm. Appl Energy, 88:1568–1577.
[24] Lazzaretto A, Toffolo A(2004) Energy, economy and environment as objectives in multi–criterion optimization of thermal systems design. Energy, 29: 1139–1157.
[25] BarzegarAvval H, Ahmadi P, Ghaffarizadeh AR, Saidi MH (2011) Thermo–economic–environmental multi-objective optimization of a gas turbine power plant with preheater using evolutionary algorithm,Int J Energ Res, Volume 35, Issue 5:389–403.